Ernest Rutherford is the answer you are looking for my friend.
Answer:
Explanation:
The formula to determine the size of a capillary tube is
h = 2•T•Cos θ / r•ρ•g
Where
h = height of liquid level
T = surface tension
r = radius of capillary tube
ρ = density of liquid
θ = angle of contact = 0°
g =acceleration due to gravity=9.81m/s²
The liquid is water then,
ρ = 1000 kg / m³
Given that,
T = 0.0735 N/m
h = 0.25mm = 0.25 × 10^-3m
Then,
r = 2•T•Cos θ / h•ρ•g
r = 2 × 0.0735 × Cos0 / 2.5 × 10^-3 × 1000 × 9.81
r = 5.99 × 10^-3m
Then, r ≈ 6mm
The radius of the capillary tube is 6mm
So, the minimum size is
Volume = πr²h
Volume = π × 6² × 0.25
V = 2.83 mm³
The minimum size of the capillary tube is 2.83mm³
Ruff's image is 50m behind the mirror surface and the image is also 3m tall.
This is because it is a plane mirror.
Answer:
E) d/sqrt2
Explanation:
The initial electric force between the two charge is given by:

where
k is the Coulomb's constant
q1, q2 are the two charges
d is the separation between the two charges
We can also rewrite it as

So if we want to make the force F twice as strong,
F' = 2F
the new distance between the charges would be

so the correct option is E.