In amides, the carbonyl carbon is bonded to a nitrogen. The nitrogen in an amide can be bonded either to hydrogens, to carbons, or to both. ... Another way of thinking of an ester is that it is a carbonyl bonded to an alcohol. Thioesters are similar to esters, except a sulfur is in place of the oxygen.
Looking at the information given above, you will notice that, for cancer disease, the patient was sure that his parents and aunts did not have the disease condition but it does not know whether his grand parents and uncles have it or not. Therefore, he will have to find out more about history of cancer in the family.
For heart disease condition, his parents and uncles have heart problems. Because of this, the patient has to undergo preventative care for heart disease.
For diabetes condition, his grand parents have diabetes and he also thinks that his aunts have. Due to this fact, the patient also have to receive preventative care for diabetes.
Answer: There are
molecules present in 7.62 L of
at
and 722 torr.
Explanation:
Given : Volume = 7.62 L
Temperature = 
Pressure = 722 torr
1 torr = 0.00131579
Converting torr into atm as follows.

Therefore, using the ideal gas equation the number of moles are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

According to the mole concept, 1 mole of every substance contains
atoms. Hence, number of atoms or molecules present in 0.244 mol are calculated as follows.

Thus, we can conclude that there are
molecules present in 7.62 L of
at
and 722 torr.
Answer:
12.62 L
Explanation:
First, we have to calculate the moles corresponding to 18.0 g of oxygen gas (MW 32.0).
18.0 g × (1 mol/32.0 g) = 0.563 mol
Then, we can find the volume occupied by 0.563 moles of oxygen at STP (273,15 K, 1.00 atm) using the ideal gas law.
P × V = n × R × T
V = n × R × T / P
V = 0.563 mol × 0.0821 atm.L/mol.K × 273.15 K / 1.00 atm
V = 12.62 L