A law stating that the pressure of a given mass of an ideal gas is inversely proportional to its volume at a constant temperature.
Hope it helps
Answer:
127.42m
Explanation:
The air pressure can be understood as the weight exerted by the air column on a body, for this case we must remember that the pressure is calculated by the formula P=αgh, Where P=pressure, h=gravity, h= height,α=density
So what we must do to solve this problem is to find the length of the air column above and below the building and then subtract them to find the height of the building, taking into account the above the following equation is inferred
h2-h1= building height=H

P1=100kPa=100.000Pa
P2=98.5kPa=98.500Pa
α=1.2 kg/m^3
g=9.81m/s^2

Answer:
L = Henry
C = Farad
Explanation:
The electrical parameter represented as L is the inductance whose unit is Henry(H).
The electrical parameter represented as C is the inductance whose unit is Farad
Resonance frequency occurs when the applied period force is equal to the natural frequency of the system upon which the force acts :
To obtain :
At resonance, Inductive reactance = capacitive reactance
Equate the inductive and capacitive reactance
Inductive reactance(Xl) = 2πFL
Capacitive Reactance(Xc) = 1/2πFC
Inductive reactance(Xl) = Capacitive Reactance(Xc)
2πFL = 1/2πFC
Multiplying both sides by F
F * 2πFL = F * 1/2πFC
2πF²L = 1/2πC
Isolating F²
F² = 1/2πC2πL
F² = 1/4π²LC
Take the square root of both sides to make F the subject
F = √1 / √4π²LC
F = 1 /2π√LC
Hence, the proof.
Answer:
All the detailed steps are mentioned in pictures.
Explanation:
See attached pictures.