We could answer the question through the help of Faraday's
Law of Induction:
Volts induced = - N•dΦ/dt
where N is the number of turns, and
Φ is the magnitude of the magnetic field.
V = IR, or R = V / I
V = -18 * [13Wb – 4.5Wb] / 0.072s
V = -2125 volts the sign just specifies direction
R = -2125V / 190
A
R = -11.1842105 Ω
I would say D) two high tides and two low tides each day
See for yourself how the forces of electricity and magnetism can work together by building a simple DC electric motor using simple materials you can find in any hardware store!
Electricity and magnetism are both forces caused by the movement of tiny charged particles that make up atoms, the building blocks of all matter. When a wire is hooked up to a battery, current flows through the wire because negatively charged electrons flow from the negative terminal of the battery toward the positive terminal of the battery because opposite charges attract each other, while similar charges repel each other. This flow of electrons through the wire is an electric current, and it produces a magnetic field.
In a magnet, atoms are lined up so that the negatively charged electrons are all spinning in the same direction. Like an electric current, the movement of the electrons creates a magnetic force. The area around the magnet where the force is active is called a magnetic field. Metal objects and other magnets that enter this field will be pulled toward the magnet.
The way the atoms are lined up creates two different poles in the magnet, a north pole and a south pole. As with electrical charges, opposite poles attract each other, while like poles repel each other.
Learn about electromagnetism and its many uses here.
Now let's watch it work as we build a motor.
(Note: This science project requires adult supervision.)
Answer:
You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. idk if this helps.
Explanation:
Explanation:
I want to say option B - Both forces can act without objects touching.