Explanation:
Let us assume that the maximum allowable horizontal distance be represented by "d".
Therefore, torque equation about A will be as follows.

d = ![\frac{[2 \times 75 \times (0.7+0.15+0.15) - 60 \times 0.15 - 252 \times 0.15 \times 2]}{252}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2%20%5Ctimes%2075%20%5Ctimes%20%280.7%2B0.15%2B0.15%29%20-%2060%20%5Ctimes%200.15%20-%20252%20%5Ctimes%200.15%20%5Ctimes%202%5D%7D%7B252%7D)
d = 0.409 m
Thus, we can conclude that the maximum allowable horizontal distance from the axle A of the wheelbarrow to the center of gravity of the second bag if she can hold only 75 N with each arm is 0.409 m.
Answer:
q = 8.61 10⁻¹¹ m
charge does not depend on the distance between the two ships.
it is a very small charge value so it should be easy to create in each one
Explanation:
In this exercise we have two forces in balance: the electric force and the gravitational force
F_e -F_g = 0
F_e = F_g
Since the gravitational force is always attractive, the electric force must be repulsive, which implies that the electric charge in the two ships must be of the same sign.
Let's write Coulomb's law and gravitational attraction
In the exercise, indicate that the two ships are identical, therefore the masses of the ships are the same and we will place the same charge on each one.
k q² = G m²
q =
m
we substitute
q =
m
q =
m
q = 0.861 10⁻¹⁰ m
q = 8.61 10⁻¹¹ m
This amount of charge does not depend on the distance between the two ships.
It is also proportional to the mass of the ships with the proportionality factor found.
Suppose the ships have a mass of m = 1000 kg, let's find the cargo
q = 8.61 10⁻¹¹ 10³
q = 8.61 10⁻⁸ C
this is a very small charge value so it should be easy to create in each one
Answer:

Explanation:
What is said is that the meter fell d=18.3cm=0.183m under the action of gravity. We can use the formula for accelerated motion:

Since it departed from rest it will mean that:

So our time will be:

Which for our values is:

Answer:
5.09 Pa
Explanation:
Area of the circle = πr²
The diameter is given, so 100/2 = 50 m is the radius.
π x 50² = 7854 m²
Pressure = force/area
Pressure = 40000/7854
Pressure = 5.09 Pa
Hope this helps!
Answer:
B. Increase the electric force by rubbing the balloon for a longer period of time.
Explanation: