I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.
Technically, the answer is iron. Oxygen has a melting point way below zero (-219 degrees celsius), ice becomes water AT room temperature and bromine is already a liquid at room temperature. So, iron has a melting point greater than room temperature due to the fact that metals are made up of giant structures of atoms in a regular arrangement, and there are strong forces of electrostatic attraction between positive metal ions and negative electrons, meaning that a lot of heat energy is required to break the bonds, i.e. a very high melting point, approx. 1500 degrees celsius. Hope this helps.
The heat energy breaks down the bonds between the molecules of the solid so the molecules become looser. Further hearing of the liquid causes the bonds to be broken down and the molecules will move further apart.
Answer:
Option C:- that is equal to mass of an proton.
Explanation:
Protons and neutrons have approximately the same mass, about 1.67 × 10-24 grams, which scientists define as one atomic mass unit (amu) or one Dalton. While electron has mass of 9.31 ×10⁻¹⁹.
It is kept constant
There is the answer if it helped