B, C, and D are your answers.
Answer:
414.9 m
Explanation:
First, become familiar with the horizontal, and vertical vector components.
Vertical vector: Vy = V × sin (θ).
Horizontal vector: Vx = V × cos(θ).
Distance traveled = Velocity vector × time in the air.
Time in the air given Vy = 2 × Vy / g (in respect to the metric of the vector).
Range of the projectile = Vx² / g
Time in the air given Vx = (Vx + √(Vx)² + 2gh) / g.
Given a 28° angle with an initial velocity of 70m/s, we have enough information to calculate!
Vx = 70 m/s × cos(28°) ≈ 61.806 m/s
Vy = 70 m/s × sin(28°) ≈ 32.863 m/s
t = 2 × Vy / g
t = 2 × ≈32.863 / 9.8
t = ≈65.726 / 9.8
t ≈ 6.7 s
Distance traveled (horizontal) = Vx × t = 61.806 × 6.7 ≈ 414.9 m
B.) Stellar evolution is "<span>the life cycle of a star"
Hope this helps!</span>
Answer:
12.72 sec
Explanation:
The time it takes to travel a certain distance can be found by dividing the distance that needs to be travelled by the speed with which you are travelling, therefore...

Answer:
the the the the eeeeeeeeeeeeeeeeeeeeee
Explanation: