Answer:
(a) 
(b) 
Explanation:
<u>Given:</u>
= The first temperature of air inside the tire = 
= The second temperature of air inside the tire = 
= The third temperature of air inside the tire = 
= The first volume of air inside the tire
= The second volume of air inside the tire = 
= The third volume of air inside the tire = 
= The first pressure of air inside the tire = 
<u>Assume:</u>
= The second pressure of air inside the tire
= The third pressure of air inside the tire- n = number of moles of air
Since the amount pof air inside the tire remains the same, this means the number of moles of air in the tire will remain constant.
Using ideal gas equation, we have

Part (a):
Using the above equation for this part of compression in the air, we have

Hence, the pressure in the tire after the compression is
.
Part (b):
Again using the equation for this part for the air, we have

Hence, the pressure in the tire after the car i driven at high speed is
.
Answer:
A car accelerates from rest, and travels 400 m in 3.5 seconds. If
the net force on the car is 12,000 N what is the mass of the car? bzgs dvd d dv dvdvd dhd dbvd
Explanation:
shd dhd bdvd dhdbduhdbdhdbbdceudd f
Im pretty sure its A cuz is closer to the earth.
B. sent through the atmosphere
Before solving this question, first we have to understand the special theory of relative.
As per classical mechanics, the velocity of light will be different in different frame of reference. The light moves in the ether medium which exists every where in the entire universe.
Let us consider a body which moves with a velocity v. Let light is coming along the direction of the body. As per classical mechanics,the velocity of light with respect to the body will be [ c-v].
Let us consider that light is coming from opposite direction. Hence, the velocity of light with respect to the observer will be c+v.
From above we see that velocity of light is different in both the cases which is wrong.
As per Einstein's special theory of relativity, the velocity of light will be same in every frame of reference i.e c=300000 km/s.
As per the question ,the space craft is moving with a velocity 0.1 c.
We are asked to calculate the velocity of the light with respect to an observer present in Mars.
Considering Einstein's theory of relativity, the velocity of light will be c [300000 km/s] with respect to the person in Mars.