A sound wave leaves the loudspeaker. As it travels, it experiences a temporary increase in wavelength and then returns to its original wavelength. The sound wave traveled through a helium balloon (helium is less dense than air could explain this change in wavelength
The pattern of disruption brought on by energy moving away from the sound source is known as a sound wave. Longitudinal waves are what makeup sound. This indicates that the direction of energy wave propagation and particle vibrational propagation are parallel. The atoms oscillate when they are put into vibration.
A high-pressure and a low-pressure zone are created in the medium as a result of this constant back and forth action. Compressions and rarefactions, respectively, are terms used to describe these high- and low-pressure zones. The sound waves go from one medium to another as a result of these regions being transmitted to the surrounding media.
To learn more about sound waves please visit -
brainly.com/question/11797560
#SPJ1
Beta particles come from the nucleus. Electrons are found around the nucleus.
Beta particles normally travel very fast out of a nucleus in a straight line. Electrons normally orbit the nucleus of an atom.
They both have the same mass and the same charge.
Answer:
D) This layer is the emitter of a PNP transistor, so it could include boron.
Got it on quiz! Good luck!
Explanation:
Answer: Entropy is basically a thermodynamic quantity that tells the randomness of a system or as said in the question tells us a measure of the disorder of the system. The second law of thermodynamics states that a closed system has entropy which may remain constant
It's going to be the third one because conductors allow energy to flow but insulators don't.