1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
matrenka [14]
3 years ago
9

La osteoporosis puede presentarse en la epoca de el embaraso y la lactancia

Engineering
1 answer:
MArishka [77]3 years ago
5 0

Answer:

En algunos casos, las mujeres desarrollan osteoporosis durante el embarazo o la lactancia, aunque esto es poco común. La osteoporosis es la pérdida ósea que es lo suficientemente grave como para provocar huesos frágiles y un mayor riesgo de fractura.

Explanation:

Espero que esto ayude a marcar el MÁS CEREBRAL !!!

You might be interested in
Joinn my zo om lets play some blookets<br> 98867 708157<br> 9dPQPW
pav-90 [236]

Answer:k

Explanation:

6 0
2 years ago
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
3 years ago
The level of water in a dam is 6 m. The rectangular gate ABC is pinned at point B so it can rotate freely about this point. When
olchik [2.2K]

Answer:

The reaction at support B

Rb= 235440N

The reaction at support C

RC= 29430N

Explanation : check attachment

6 0
3 years ago
Risks in driving never begins with yourself, but with other drivers who take risks.
Ymorist [56]

False! Just saying. You could be under the influence, or just have no clue as to what you're doing.

8 0
2 years ago
The state of plane strain on an element is:
balu736 [363]

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

4 0
3 years ago
Other questions:
  • Consider a cubical furnace with a side length of 3 m. The top surface is maintained at 700 K. The base surface has emissivity of
    13·1 answer
  • Identify the measurement shown in figure 7 and state in centimeters ​
    5·1 answer
  • Place these events in chronological order. Put the numbers 1-6 next to the<br> events.
    15·1 answer
  • La Patrulla Fronteriza de los Estados Unidos analiza la compra de un helicóptero nuevo para la vigilancia aérea de la frontera d
    14·1 answer
  • How did humans create a space suit without ever going. How did we know spaces conditions?
    5·2 answers
  • 10. Power = (Distance * Force) / Time
    7·1 answer
  • Which option identifies the step skipped in the following scenario?
    9·2 answers
  • Match the scenario to the problem-solving step it represents.
    7·1 answer
  • Based on the pattern, what are the next two terms of the sequence? 9,94,916,964,9256,... A. 91024,94096 B. 9260,91028 C. 9260,92
    5·1 answer
  • Technician A says the compressor is the dividing line of the refrigeration system, low- to high-side. Technician B says the expa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!