1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iragen [17]
3 years ago
6

Which statement describes how globes represent Earth’s surface?

Physics
2 answers:
n200080 [17]3 years ago
3 0
It would be A they model all of earths surfaces because that’s why it was made it was to show the world in a smaller form.
erma4kov [3.2K]3 years ago
3 0
I think the answer is the first one since I’m pretty sure it cannot be the other three
You might be interested in
In noisy factory environments, it's possible to use a loudspeaker to cancel persistent low-frequency machine noise at the positi
Vaselesa [24]

Answer:

7.39 m or 3.61 m

Explanation:

\lambda = Wavelength

f = Frequency = 90 Hz

v = Speed of sound = 340 m/s

Path difference of the two waves is given by

s_1-s_2=\frac{\lambda}{2}

Velocity of wave

v=f\lambda\\\Rightarrow \lambda=\frac{v}{f}\\\Rightarrow \lambda=\frac{340}{90}\\\Rightarrow \lambda=3.78\ m

s_1=s_2\pm\frac{\lambda}{2}\\\Rightarrow s_1=5.5\pm \frac{3.78}{2}\\\Rightarrow s_1=7.39\ m, 3.61\ m

So, the location from the worker is 7.39 m or 3.61 m

7 0
3 years ago
If you have a 1.0 m aqueous solution of NaCl, by how much will it increase the water’s boiling point, if KB = 0.512 °C/m? In oth
fgiga [73]

<u>Answer:</u> The elevation in boiling point is 1.024°C.

<u>Explanation:</u>

To calculate the elevation in boiling point, we use the equation:

\Delta T_b=ik_b\times m

where,

i = Van't Hoff factor = 2 (for NaCl)

\Delta T_b = change in boiling point  = ?

k_b = boiling point constant = 0.512^oC/m

m = molality = 1.0 m

Putting values in above equation, we get:

\Delta Tb=2\times 0.512^oC/m\times 1.0m\\\\\Delta Tb=1.024^oC

Hence, the elevation in boiling point is 1.024°C.

5 0
3 years ago
Planets that are cold have only a small amount of gravity
Nonamiya [84]
There is no theoretical OR observational evidence for that statement.
4 0
3 years ago
A stone is thrown vertically upward with a speed of 15.5 m/s from the edge of a cliff 75.0 m high .
rjkz [21]

a) 2.64 s

We can solve this part of the problem by using the following SUVAT equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the stone

u is the initial velocity

t is the time

a is the acceleration

We must be careful to the signs of s, u and a. Taking upward as positive direction, we have:

- s (displacement) negative, since it is downward: so s = -75.0 m

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a= g = -9.8 m/s^2 (acceleration of gravity)

Substituting into the equation,

-75.0 = 15.5 t -4.9t^2\\4.9t^2-15.5t-75.0 = 0

Solving the equation, we have two solutions: t = -5.80 s and t = 2.84 s. Since the negative solution has no physical meaning, the stone reaches the bottom of the cliff 2.64 s later.

b) 10.4 m/s

The speed of the stone when it reaches the bottom of the cliff can be calculated by using the equation:

v=u+at

where again, we must be careful to the signs of the various quantities:

- u (initial velocity) positive, since it is upward: +15.5 m/s

- a (acceleration) negative, since it is downward: so a = g = -9.8 m/s^2

Substituting t = 2.64 s, we find the final velocity of the stone:

v = 15.5 +(-9.8)(2.64)=-10.4 m/s

where the negative sign means that the velocity is downward: so the speed is 10.4 m/s.

c) 4.11 s

In this case, we can use again the equation:

s=ut+\frac{1}{2}at^2

where

s is the displacement of the package

u is the initial velocity

t is the time

a is the acceleration

We have:

s = -105 m (vertical displacement of the package, downward so negative)

u = +5.40 m/s (initial velocity of the package, which is the same as the helicopter, upward so positive)

a = g = -9.8 m/s^2

Substituting into the equation,

-105 = 5.40 t -4.9t^2\\4.9t^2 -5.40 t-105=0

Which gives two solutions: t = -5.21 s and t = 4.11 s. Again, we discard the first solution since it is negative, so the package reaches the ground after

t = 4.11 seconds.

5 0
3 years ago
Read 2 more answers
Based on the reading which statement is FALSE?
zvonat [6]
The answer is the last option.
4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the net force necessary for a 1.6 x 103 kg car to accelerate forward at 2.0<br> m/s?
    15·1 answer
  • If a ball is rolling across a floor at a constant speed is it accelerating
    10·1 answer
  • E4.Suppose Galileo’s pulse rate was 75 beats per minute. How many beats per second is this? What is the time in seconds between
    7·1 answer
  • In a generator the current changes direction each time the passes through the of a d
    6·2 answers
  • If a steel containing 1.88 wt%C is cooled relatively slowly to room temperature, what is the expected weight fraction of pearlit
    5·1 answer
  • How did science of cartography came in India​
    10·1 answer
  • A +15 nC point charge is placed on the x axis at x = 1.5 m, and a -20 nC charge is placed on the y axis at y = -2.0m. What is th
    8·1 answer
  • A car initially traveling at 20 m/s accelerates at a uniform rate of 4.00 m/sec^2 for a displacement of 50 m
    6·1 answer
  • The rubber ducky has a mass of 5 grams and a volume of 75 mL. How much water does he displace?
    13·1 answer
  • Gravitational force exist between you and the building why are you not pulled towards the building?​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!