Answer:
Cells are uncountable becasue they move around your body, make up your skin and other organs as well. And because when you grow, the cells multiply, and that makes it very hard for scientists to count cells in a human's body.
Explanation:
Hope this helped!
Answer:
3. Inverse 1. Direct
Explanation:
P- pressure
V - volume
T - temperature
P1*V1 / T1 = P2*V2 / T2 ...... (1)
That's the general gas law with the combined ideas of charles, boyle & lussac.
Whenever you are restricted as "constant" temperature, volume, or pressure...cancel them off of your equation.
in this case 3. is indirectly telling us to cancel the temperature (T).
so we'll be left w P1*V1 = P2*V2
now notice that any relation ship that is multiplied like the one above consists of inversely related quantities. & so we conclude that-
P & V are inversely proportional or have an inverse relationship.
similarly in 1. we'll cancel p off of the general formula (1)
to be left with V1/T1 = V2/T2
also note that quantities involved in division are directly related to each other & hence the answer.
Answer:
for volume only liters can be used
Explanation:
Answer:
b) The dehydrated sample absorbed moisture after heating
Explanation:
a) Strong initial heating caused some of the hydrate sample to splatter out.
This will result in a higher percent of water than the real one, because you assume in the calculation that the splattered sample was only water (which in not true).
b) The dehydrated sample absorbed moisture after heating.
Usually inorganic salts may absorbed moisture from the atmosphere so this will explain the 13% difference between calculated water percent the real content of water in the hydrate.
c) The amount of the hydrate sample used was too small.
It will create some errors but they do not create a difference of 13% difference as stated in the problem.
d) The crucible was not heated to constant mass before use.
Here the error is small.
e) Excess heating caused the dehydrated sample to decompose.
Usually the inorganic compounds are stable in the temperature range of this kind of experiments. If you have an organic compound which retain water molecules you may decompose the sample forming volatile compounds which will leave crucible so the error will be quite high.