A green rat snake that lives in the grass and a brown rat snake that lives in the desert is a form of geographically separated species.
Explanation:
The habitats of the green rat snake and brown rat snake shows that they are geographically separated species.
The two rat snakes are different species because of their distinct habitat and morphology.
When two species get separated by habitat their breeding method changes either by morphology or breeding pattern.
Such species do not produce viable offspring.
Thus a green rat snake and a brown rat snake have very different habitats they are now two different species.
Such species are said to be reproductively isolated species. Two species having genetic divergence undergo natural selection to adapt to the environment.
The answer is “Only some of the molecules of a weak base dissociate to produce hydroxide ions when mixed with water, but all of the molecules of a strong base dissociate to produce hydroxide ions”
Q1. Chemical, Physical, Physical, Physical
(l am not 100% sure about the 4th answer)
Q2. All of the above
If you are comparing 2 metals, the metal with a higher <u>Number of free ions</u> will react with EDTA first
<h3>What is EDTA ?</h3>
EDTA is a type of chemical which binds certain metal ions such as calcium and magnesium. some of the functions of EDTA includes:
- Preventing blood clotting of blood samples
- prevention of the formation of Biofilm by bacterias
The EDTA will readily react with metals which have a hiogher number of free ions that it can bind with.
Hence we can conclude that If you are comparing 2 metals, the metal with a higher <u>Number of free ions</u> will react with EDTA first.
Learn more about EDTA : brainly.com/question/10818175
Answer:
1.35 g
Explanation:
Data Given:
mass of Potassium Permagnate (KMnO₄) = 3.34 g
Mass of Oxygen: ?
Solution:
First find the percentage composition of Oxygen in Potassium Permagnate (KMnO₄)
So,
Molar Mass of KMnO₄ = 39 + 55 + 4(16)
Molar Mass of KMnO₄ = 158 g/mol
Calculate the mole percent composition of Oxygen in Potassium Permagnate (KMnO₄).
Mass contributed by Oxygen (O) = 4 (16) = 64 g
Since the percentage of compound is 100
So,
Percent of Oxygen (O) = 64 / 158 x 100
Percent of Oxygen (O) = 40.5 %
It means that for ever gram of Potassium Permagnate (KMnO₄) there is 0.405 g of Oxygen (O) is present.
So,
for the 3.34 grams of Potassium Permagnate (KMnO₄) the mass of Oxygen will be
mass of Oxygen (O) = 0.405 x 3.34 g
mass of Oxygen (O) = 1.35 g