1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
3 years ago
8

2. A fan has a power rating of 20 watts and is used for

Physics
1 answer:
stealth61 [152]3 years ago
5 0

Answer:

Hold up wait let me think

Explanation:

You might be interested in
An insulated pipe carries steam at 300°C. The pipe is made of stainless steel (with k = 15 W/mK), has an inner diameter is 4 cm,
insens350 [35]

Answer:

The answers to the question are

(i) The rate of heat loss per-unit-length (W/m) from the pipe is 131.62 W

(ii) The temperature of the outer surface of the insulation is 49.89 °C

Explanation:

To solve the question, we note that the heat transferred is given by

Q = \frac{2\pi L(t_{hf} - t_{cf}) }{\frac{1}{h_{hf}r_1}+\frac{ln(r_2/r_1)}{k_A} + \frac{ln(r_3/r_2)}{k_B} +\frac{1}{h_{cf}r_3}}

Where

t_{hf} = Temperature at the inside of the pipe = 300 °C

t_{f} = Temperature at the outside of the pipe = 20 °C

r₁ =internal  radius of pipe = 4.0 cm

r₂ = Outer radius of pipe = 4.5 cm

r₃ = Outer radius of the insulation = r₂ + 2.5 = 7.0 cm

k_A = 15 W/m·K

k_B = 0.038 W/m·K

h_{hf} = 75 W/m²·K

h_{cf} = 10 W/m²·K

Plugging in the values in the above equation where for a unit length L = 1 m, we have

Q = 131.32 W

From which we have, for the film of air at the pipe outer boundary layer

Q = \frac{t_A-t_B}{R_T} Where R_T for the air film on the pipe outer surface is given by

R_T= \frac{1}{\alpha A}

where A =area of the outside of the pipe

= \frac{1}{10*2\pi*0.07*1 } = 0.227 K/W

Therefore

131.32 W = \frac{t_A-20}{0.227} which gives

t_A = 49.89 °C

Heat transferred by radiation = q' = ε×σ×(T₁⁴ - T₂⁴)

Where ε = 0.9, σ, = 5.67×10⁻⁸W/m²·(K⁴)

T₁ = Surface temperature of the pipe = 49.89 °C and

T₂ = Temperature of the surrounding = 20.00 °C

Plugging in the values gives, q' = 0.307 W per m²

Total heat lost per unit length = 131.32 + 0.307 =131.62 W

8 0
3 years ago
What’s the velocity of a sound wave traveling through air at a temperature of 18°C (64.4°F)?
Anna11 [10]

Answer:

342 m/s

Explanation:

The velocity of sound in air is approximated as:

v ≈ 331.4 + 0.6 T

where v is the velocity in m/s and T is the temperature in Celsius.

At T = 18:

v ≈ 331.4 + 0.6 (18)

v ≈ 342.2

The velocity is approximately 342 m/s.

4 0
3 years ago
Read 2 more answers
What happens to the work done when a force is doubled and the distance moved remain the same?​
san4es73 [151]

Answer:

Work done gets doubled.

Explanation:

The work done by a force is given by :

W = Fd

Where

F is force and d is distance move

If the force is doubled and the distance moved remain the same, it would mean that the work done becomes double of the initial work done.

4 0
3 years ago
Two objects of the same size are both perfect blackbodies. One has a temperature of 3000 K, so its frequency of maximum emission
bija089 [108]

Answer:

a) The colder body (3000k), b) hearter body c) 12000K body

Explanation:

This exercise should know the power emitted by the objects and the distribution of this emission in the energy spectrum, for this we will use Stefan's laws and that of Wien's displacement

Stefan's Law                     P = σ A e T⁴

Wien displacement law   λ T = 2,898 10⁻³ m K

Let's calculate the power emitted for each object.

As they are perfect black bodies e = 1, they also indicate that they have the same area

T = 3000K

       P₁ = σ A T₁⁴

T = 12000K

       P₂ = σ A T₂⁴

       P₂ / P₁ = T₂⁴ / T₁⁴

       P₂ / P₁ = (12000/3000)⁴

       P₂ / P₁ = 256

This indicates that the hottest body emission is 256 times the coldest body emission.

Let's calculate the maximum emission wavelength

Body 1

T = 3000K

       λ T = 2,898 10-3

       λ₁ = 2.89810-3 / T

       λ₁ = 2,898 10-3 / 3000

       λ₁ = 0.966 10-6 m

      λ₁ = 966 nm

T = 12000K

      λ₂ = 2,898 10-3 / 12000

      λ₂ = 0.2415 10-6 m

      λ₂ = 214 nm

a) The colder body (3000k) emits more light in the infrared, since the emission of the hot body is at a minimum (emission tail)

b) The two bodies have emission in this region, the body of 3000K in the part of rise of the emission and the body to 12000K in the descent of the emission even when this body emits 256 times more than the other, so this body should have the highest broadcast in this area

c) The emission of the hottest 12000K body is mainly in UV

d) The hottest body emits more energy in UV and visible

e) No body has greater emission in all zones

5 0
3 years ago
The engine in an imaginary sports car can provide constant power to the wheels over a range of speeds from 0 to 70 miles per hou
puteri [66]

Answer:

t=5.3687\ s  is the time taken by the car to accelerate the desired range of the speed from zero at full power.

Explanation:

Given:

Range of speed during which constant power is supplied to the wheels by the car is 0\ mph\ to\ 70\ mph.

  • Initial velocity of the car, v_i=0\ mph
  • final velocity of the car during the test, v_f=32\ mph=14.3052\ m.s^{-1}
  • Time taken to accelerate form zero to 32 mph at full power, t=1.2\ s
  • initial velocity of the car, u_i=0\ mph
  • final desired velocity of the car, u_f=64\ mph=28.6105\ m.s^{-1}

Now the acceleration of the car:

a=\frac{v_f-v_i}{t}

a=\frac{14.3052-0}{1.2}

a=11.921\ m.s^{-1}

Now using the equation of motion:

u_f=u_i+a.t

64=0+11.921\times t

t=5.3687\ s is the time taken by the car to accelerate the desired range of the speed from zero at full power.

8 0
3 years ago
Other questions:
  • An "E" tuning fork with a frequency of 329 Hz is used to test the "E" note of a piano. Four beats are heard. This means _____.
    6·2 answers
  • How is heavy water different from normal water
    6·2 answers
  • PLLLLLLLLLLZ HELP The virtual image of a lens is always on the same side of the lens as the object.
    6·1 answer
  • Two identical point charges are fixed to diagonally opposite corners of a square that is 0.715 m on a side. Each charge is +4.0
    5·1 answer
  • Cual es l diferencia entre ruido y sonido
    13·1 answer
  • Sam moves an 800 N wheelbarrow 5 meters in 15 seconds. How much work did he do?
    5·1 answer
  • A balloon contains 0.04m3 of air at a pressure of 1.20 x 105Pa. Calculate the pressure required to reduce its volume to 0.025m3
    7·1 answer
  • Help please <br>the question is in the picture ​
    8·2 answers
  • A lead object and quartz object each have the same initial volume. the volume of each increases by the same amount, because the
    8·1 answer
  • A cat (5kg) has a potential energy of 8J. The cat is stuck on top of a bookshelf and then falls off the bookshelf. What is the v
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!