Answer:
y <8 10⁻⁶ m
Explanation:
For this exercise, they indicate that we use the Raleigh criterion that establishes that two luminous objects are separated when the maximum diffraction of one of them coincides with the first minimum of the other.
Therefore the diffraction equation for slits with m = 1 remains
a sin θ = λ
in general these experiments occur for oblique angles so
sin θ = θ
θ = λ / a
in the case of circular openings we must use polar coordinates to solve the problem, the solution includes a numerical constant
θ = 1.22 λ / a
The angles in these measurements are taken in radians, therefore
θ = s / R
as the angle is small the arc approaches the distance s = y
y / R = 1.22 λ / s
y = 1.22 λ R / a
let's calculate
y = 1.22 500 10⁻⁹ 0.42 / 0.032
y = 8 10⁻⁶ m
with this separation the points are resolved according to the Raleigh criterion, so that it is not resolved (separated)
y <8 10⁻⁶ m
Answer:

Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :

A is the amplitude
In case of spring the compression in the spring is equal to its amplitude



So, the angular frequency of the spring is 32.14 rad/s.
Charles' Law: The Temperature-Volume Law. This law states that the volume of a given amount of gas held at constant pressure is directly proportional to the Kelvin temperature. As the volume goes up, the temperature also goes up, and vice-versa.
Answer:
yes it was a constant speed and the car traveled 10 meters in 20 seconds.
Explanation:
Answer:
zero
Explanation:
For the box remaining at rest, the total acceleration on the box must be zero. Since force F = m*a, the force F must also be zero.