Answer:
d = 421.83 m
Explanation:
It is given that,
Height, h = 396.9 m
Horizontal speed, v = 46.87 m/s
We need to find the distance traveled by the ball horizontally. Let t is the time taken by the ball. Using second equation of motion for vertical direction. So,

Now d is the distance covered by the cannonball. So,

Hence, this is the required solution.
First
let us imagine the projectile launched at initial velocity V and at angle
θ relative to the horizontal. (ignore wind resistance)
Vertical component y:
The
initial vertical velocity is given as Vsinθ
The moment the projectile reaches the maximum
height of h, the vertical velocity
will be 0, therefore the time t taken to attain this maximum height is:
h = Vsinθ - gt
0 = Vsinθ - gt
t = (Vsinθ)/g
where
g is acceleration due to gravity
Horizontal component x:
The initial horizontal velocity is given as Vcosθ. However unlike
the vertical component, this horizontal velocity remains constant because this is unaffected by gravity. The time to travel the
horizontal distance D is twice the value of t times the horizontal velocity.
D = Vcosθ*[(2Vsinθ)/g]
D = (2V²sinθ cosθ)/g
D = (V²sin2θ)/g
In order for D (horizontal distance) to be
maximum, dD/dθ = 0
That is,
2V^2 cos2θ / g = 0
And since 2V^2/g must not be equal to zero, therefore cos(2θ) = 0
This is true when 2θ = π/2 or θ = π/4
Therefore it is now<span> shown that the maximum horizontal travelled is attained when
the launch angle is π/4 radians, or 45°.</span>
Answer: reaction force = -558N
Explanation:
w = f = 558N
since action force and reaction force are equal in magnitude and opposite in direction,
reaction force = -(f)
reaction force = -558N
if that helps.
Answer:
Momentum is given by
p
=
m
v
. Impulse is the change of momentum,
I
=
Δ
p
and is also equal to force times time:
I
=
F
t
. Rearranging,
F
=
I
t
=
Δ
p
t
=
0
−
20
,
000
5
=
−
4000
N
.
Explanation:
Momentum before the collision is
p
=
m
v
=
2000
⋅
10
=
20
,
000
k
g
m
s
−
1
.
Assuming the truck comes to a complete halt, the momentum after the collision is
0
k
g
m
s
−
1
.
The change in momentum,
Δ
p
, is initial minus final
→
0
−
20
,
000
=
−
20
,
000
This is called the impulse:
I
=
Δ
p
. Impulse is also equal (check the units) to force times time:
I
=
F
t
.
We can rearrange this expression to make
F
the subject:
F
=
I
t
=
Δ
p
t
=
−
20
,
000
5
=
−
4000
N
The negative sign just means the force acting is in the opposite direction to the initial momentum.
(This will be the average force acting during the collision: collisions are chaotic so the force is unlikely to be constant.)
Answer:
Electric current is electric charge in motion. It can take the form of a sudden discharge of static electricity, such as a lightning bolt or a spark between your finger and a ground light switch plate. ... Most electric charge is carried by the electrons and protons within an atom.
Explanation:
because it is