Answer:an electrical Current can be defined as the free flow of electrons through a circuit
Explanation:
Answer:
maximum speed of the bananas is 18.8183 m/s
Explanation:
Given data
amplitude A = 23.195 cm
spring constant K = 15.2676 N/m
mass of the bananas m = 56.9816 kg
to find out
maximum speed of the bananas
solution
we know that radial oscillation frequency formula that is = √(K/A)
radial oscillation frequency = √(15.2676/23.195)
radial oscillation frequency is 0.8113125 rad/s
so maximum speed of the bananas = radial oscillation frequency × amplitude
maximum speed of the bananas = 0.8113125 × 23.195
maximum speed of the bananas is 18.8183 m/s
Answer:
The "Biltmore Agreement" stipulated that:
Radio stations agreed to broadcast no longer than five minutes of news, twice per day, while using information supplied by the newspapers.
e. radio stations could only air five-minutes newscasts a day.
Explanation:
The Biltmore Agreement tried to reconcile within the press war between newspapers and radio, as during its golden age the newspapers´ revenues decreased. Radio´s brand new technology was more attractive and creative for advertising and could report breaking news faster than the newspapers, which through the press associations including the Associated Press and the United Press, pressured to stop providing news to radio stations beginning a war in 1933, which partially ended with the Biltmore Agreement, which restricted the radio´s broadcasting of news if the newspapers continued publishing radio listings, radio stations were to broadcast no longer than five minutes of news, twice per day, if information supplied by the newspapers was used, no sponsors were allowed, and no more that 30 words in a single story were allowed either; radio stations had to include: "See your daily newspaper for further details" in their announcements and, could only broadcast news after 9:30 AM for morning news, and after 9:00 PM for evening news, so people would have already received their newspapers.
Answer:
The size will increase.
Explanation:
When you bend a plastic ruler, it's size will increase because it is elastic and will exhibit elastic deformation. When it is been bent, it will continue to stretch until it get to a point where it will not be able to regain it formal shape, it size wound of increase. Therefore when the ruler get to elastic limit and you have bend it to the point it cannot regain it's formal shape back, it will remain bent and if further force is apply on it,it will break.
<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>