1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
3 years ago
14

Block 1, with mass m1 and speed 3.6 m/s, slides along an x axis on a frictionless floor and then undergoes a one-dimensional ela

stic collision with stationary block 2, with mass m2 = 0.40m1. The two blocks then slide into a region with a coefficient of kinetic friction of 0.50 where they stop. How far into that region do the two blocks slide?(a) block 1 m(b) block 2 m
Physics
1 answer:
irina1246 [14]3 years ago
3 0

Answer:

a) The block 1 slides 0.24 m into the rough region.

b) The block 2 slides 2.7 m

Explanation:

Hi there!

First, let´s find the final velocity of each block. With that velocities, we can calculate the kinetic energy of each block. The kinetic energy of the blocks will be equal to the work done by friction to stop them. From the equation of work, we can calculate the distance traveled by the blocks.

Since the collision is elastic, the momentum and kinetic energy of the system composed of the two blocks is constant.

The momentum of the system is calculated as the sum of the momenta of each block:

m1 · v1 + m2 · v2 = m1 · v1´ + m2 · v2´

Where:

m1 and m2 = mass of blocks 1 and 2 respectively.

v1 and v2 = velocity of blocks 1 and 2 respectively.

v1´ and v2´ = final velocity of blocks 1 and 2 respectively.

Using the data we have, we can solve the eqaution for v1´:

m1 · 3.6 m/s + 0.40 m1 · 0 = m1 · v1´ + 0.40 m1 · v2´

3.6 m/s · m1 = m1 · v1´ + 0.40 m1 · v2´

3.6 m/s = v1´ + 0.40 v2´

v1´ = 3.6 m/s - 0.40 v2´

The kinetic energy of the system also remains constant:

1/2 m1 · (v1)² + 1/2 m2 · (v2)² = 1/2 m1 · (v1´)² + 1/2 m2 · (v2´)²

Multiply by 2 both sides of the equation:

m1 · (v1)² + m2 · (v2)² = m1 · (v1´)² + m2 · (v2´)²

Let´s replace with the data:

m1 · (3.6 m/s)² + 0.40 m1 · 0 = m1 · (v1´)² + 0.40 m1 (v2´)²

divide by m1:

(3.6 m/s)² = (v1´)² + 0.40 (v2´)²

Replace v1´ = 3.6 m/s - 0.40 v2´

(3.6 m/s)² = (3.6 m/s - 0.40 v2´)² + 0.40 (v2´)²

Let´s solve for v2´:

(3.6 m/s)² = (3.6 m/s)² - 2.88 v2´ + 0.16 (v2´)² + 0.40 (v2´)²

0 = 0.56 (v2´)² - 2.88 v2´

0 = v2´(0.56 v2´ - 2.88)   v2´ = 0 (the initial velocity)

0 = 0.56 v2´ - 2.88

2.88/0.56 = v2´

v2´ = 5.1 m/s

Now let´s calculate v1´:

v1´ = 3.6 m/s - 0.40 v2´

v1´ = 3.6 m/s - 0.40 (5.1 m/s)

v1´ = 1.56 m/s

Now, let´s calculate the final kinetic energy (KE) of each block:

a) Block 1:

KE = 1/2 · m1 · (1.56 m/s)² = m1 · 1.2 m²/s²

The work done by friction is calculated as follows:

W = Fr · s

Where:

Fr = friction force.

s = traveled distance.

The friction force is calculated as follows:

Fr = N · μ

Where:

N = normal force.

μ = coefficient of friction.

And the normal force is calculated in this case as:

N = m1 · g

Where g is the acceleration due to gravity.

Then, the work done by friction will be:

W = m1 · g · μ · s

The kinetic energy of an object is the negative work that must be done on that object to bring it to stop. Then:

m1 · 1.2 m²/s² = m1 · g · μ · s

Solving for s:

s = m1 · 1.2 m²/s²  / m1 · g · μ

s = 1.2 m²/s²/ 9.8 m/s² · 0.50

s = 0.24 m

The block 1 slides 0.24 m into the rough region.

b) For block 2 the kinetic energy will be the following:

KE = 1/2 · 0.4 · m1 · (5.1 m/s)² = m1 · 5.2 m²/s²

The friction force will be:

Fr = 0.4 m1 · g · μ

And the work done will be:

W = 0.4 m1 · g · μ · s

Since W = ΔKE,

Then:

m1 · 5.2 m²/s² = 0.4 m1 · g · μ · s

Solving for s:

5.2 m²/s²/(0.4 · g · μ) = s

s =  5.2 m²/s²/(0.4 · 9.8 m/s² · 0.50)

s = 2.7 m

The block 2 slides 2.7 m

You might be interested in
Planets orbit the Sun, while the Moon and other satellites orbit the Earth. Such orbital motion is the result of _______ and eac
Lorico [155]
Gravity ? that is possibly the answer
8 0
3 years ago
A wheel starts from rest and has an angular acceleration that is given by α (t) = (6.0 rad/s4)t2. After it has turned through 10
marissa [1.9K]

Answer:

75 rad/s

Explanation:

The angular acceleration is the time rate of change of angular velocity. It is given by the formula:

α(t) = d/dt[ω(t)]

Hence: ω(t) = ∫a(t) dt

Also, angular velocity is the time rate of change of displacement. It is given by:

ω(t) = d/dt[θ(t)]

θ(t) = ∫w(t) dt

θ(t) = ∫∫α(t) dtdt

Given that: α (t) = (6.0 rad/s4)t² = 6t² rad/s⁴. Hence:

θ(t) = ∫∫α(t) dtdt

θ(t) = ∫∫6t² dtdt =∫[∫6t² dt]dt

θ(t) = ∫[2t³]dt = t⁴/2 rad

θ(t) = t⁴/2 rad

At θ(t) = 10 rev = (10 *  2π) rad = 20π rad, we can find t:

20π = t⁴/2

40π = t⁴

t = ⁴√40π

t = 3.348 s

ω(t) = ∫α(t) dt = ∫6t² dt = 2t³

ω(t) = 2t³

ω(3.348) = 2(3.348)³ = 75 rad/s

7 0
3 years ago
According to a college survey, 22% of all students work full time. find the mean for the number of 3) students who work full tim
attashe74 [19]

Assuming that the students worldwide are being considered, because of the extremely large population, this can be considered as a binomial distribution. A normal distribution is used most usually as a fair approximation of the binomial. The mean is the expectation, therefore:<span>
E[x] = np = (16)(0.22) = 3.52 
<span>μ = 3.52 </span></span>

3 0
3 years ago
MATCH THESE ^-^ Match Newton's law with the correct statement.
ikadub [295]
1 and A
2 and B
3 and D
4 and C

4 0
3 years ago
Read 2 more answers
A block of mass 4 kilograms is initially moving at 5m/s on a horizontal surface. There is friction between the block and the sur
emmasim [6.3K]

• Net vertical force on the block:

∑ <em>F</em> = <em>n</em> - <em>w</em> = 0

(<em>n</em> = magnitude of normal force, <em>w</em> = weight)

<em>n</em> = <em>w</em> = <em>m g</em>

(<em>m</em> = mass, <em>g</em> = 9.8 m/s²)

<em>n</em> = (4 kg) (9.8 m/s²) = 39.2 N

• Net horizontal force:

∑ <em>F</em> = -<em>f</em> = <em>m a</em>

(<em>f</em> = mag. of friction, <em>a</em> = acceleration)

We have <em>f</em> = <em>µ</em> <em>n</em> = 0.5 (39.2 N) = 19.6 N, so

-19.6 N = (4 kg) <em>a</em>

<em>a</em> = -4.9 m/s²

With this acceleration, the block comes to a rest from an initial speed of 5 m/s, so that it travels a distance ∆<em>x</em> in this time such that

0² - (5 m/s)² = 2 (-4.9 m/s²) ∆<em>x</em>

∆<em>x</em> = (25 m²/s²) / (9.8 m/s²) ≈ 2.55 m ≈ 2.6 m

8 0
2 years ago
Other questions:
  • When two capacitors are connected in parallel across a 12.3 v rms, 1.46 khz oscillator, the oscillator supplies a total rms curr
    6·1 answer
  • Which trends is indirectly proportional to effective nuclear charge
    12·1 answer
  • To move a heavy couch across a carpeted floor what could be used to decrease the frictional force
    11·2 answers
  • A spherical steel ball bearing has a diameter of 2.540 cm at 26.00°C. (Assume the coefficient of linear expansion for steel is 1
    12·1 answer
  • Can light be reflected and refracted at the same time?
    10·1 answer
  • What erases the impact craters on earth and is responsible for most of the landforms that we see?
    14·1 answer
  • what are known as the properties of substances that help describe a substance et does not change that substances?
    14·1 answer
  • If an earthquake occurred in Miami, Florida, then how long would it take for a seismic station in Seattle, Washington, to pick u
    15·1 answer
  • A wave travels from Medium 1 (light like slinky) into Medium 2 (heavy and rigid like snakey). Which property or properties of th
    5·1 answer
  • I appreciate any help I get on this, thank you in advanced :)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!