I'm pretty sure it's Inertia and Gravity
Inertia deals with an object's tendency to stay in motion at a constant speed.
Hopefully this helped and good luck.
Answer:
a) t₁ = 4.76 s, t₂ = 85.2 s
b) v = 209 ft/s
Explanation:
Constant acceleration equations:
x = x₀ + v₀ t + ½ at²
v = at + v₀
where x is final position,
x₀ is initial position,
v₀ is initial velocity,
a is acceleration,
and t is time.
When the engine is on and the sled is accelerating:
x₀ = 0 ft
v₀ = 0 ft/s
a = 44 ft/s²
t = t₁
So:
x = 22 t₁²
v = 44 t₁
When the engine is off and the sled is coasting:
x = 18350 ft
x₀ = 22 t₁²
v₀ = 44 t₁
a = 0 ft/s²
t = t₂
So:
18350 = 22 t₁² + (44 t₁) t₂
Given that t₁ + t₂ = 90:
18350 = 22 t₁² + (44 t₁) (90 − t₁)
Now we can solve for t₁:
18350 = 22 t₁² + 3960 t₁ − 44 t₁²
18350 = 3960 t₁ − 22 t₁²
9175 = 1980 t₁ − 11 t₁²
11 t₁² − 1980 t₁ + 9175 = 0
Using quadratic formula:
t₁ = [ 1980 ± √(1980² - 4(11)(9175)) ] / 22
t₁ = 4.76, 175
Since t₁ can't be greater than 90, t₁ = 4.76 s.
Therefore, t₂ = 85.2 s.
And v = 44 t₁ = 209 ft/s.
Answer:
I would say the answer is A... but I'm not so sure ....
Answer:
if you mean *responsible* for the transport of water from the roots to leaves is Xylem
Answer:
Flexibility Increases
Pre-breathe time decreases
Mass of suit decreases.
Explanation:
Spacesuits are designed for space shuttles when a person goes to explore the galaxy. The spacesuits shuttle era are pressurized at 4.3 pounds per inch. The gas in the suit is 100% of oxygen and there is more oxygen to breathe when the altitude of 10,000 is reached. This will decrease the breathing time and mass of suit.