1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
icang [17]
3 years ago
11

If a car has a momentum of 2.04 x 104 kgm/s and a velocity of 18 m/s, what is its mass?

Physics
1 answer:
muminat3 years ago
5 0

Answer:

Mass = 1133.33 kg (Approx.)

Explanation:

Given:

Momentum = 2.04 x 10⁴ kg[m/s]

Velocity = 18 m/s

Find:

Mass

Computation:

Mass = Momentum / Velocity

Mass = [2.04 x 10⁴] / 18

Mass = 1133.33 kg (Approx.)

You might be interested in
A car is strapped to a rocket (combined mass = 661 kg), and its kinetic energy is 66,120 J.
labwork [276]

Answer:

9.4 m/s

Explanation:

According to the work-energy theorem, the work done by external forces on a system is equal to the change in kinetic energy of the system.

Therefore we can write:

W=K_f -K_i

where in this case:

W = -36,733 J is the work done by the parachute (negative because it is opposite to the motion)

K_i = 66,120 J is the initial kinetic energy of the car

K_f is the final kinetic energy

Solving,

K_f = K_i + W=66,120+(-36,733)=29387 J

The final kinetic energy of the car can be written as

K_f = \frac{1}{2}mv^2

where

m = 661 kg is its mass

v is its final speed

Solving for v,

v=\sqrt{\frac{2K_f}{m}}=\sqrt{\frac{2(29,387)}{661}}=9.4 m/s

4 0
3 years ago
2 Which is true of a parallel circuit?
mars1129 [50]

Answer:

fxb

c

Explanation:bfffffffff

8 0
3 years ago
Knowledge and skills learned through socialization are an example of
ziro4ka [17]

Answer:

I think no.2 the answer

Because socialization and social resources are both for me

3 0
3 years ago
Which of the following statements are true?
inessss [21]

Answer:

a. If an object's speed is constant, then its acceleration must be zero.

FALSE

As we know that acceleration is defined as the rate of change in velocity

a = \frac{d\vec v}{dt}

so we can not say anything about the acceleration when speed is given to as and no information is given about velocity

b. If an object's acceleration is zero, then its speed must be constant.

TRUE

As we know that acceleration is defined as the rate of change in velocity

a = \frac{d\vec v}{dt}

Since we know that if acceleration is 0 then velocity must be constant and hence speed is also constant

c. If an object's velocity is constant, then its speed must be constant.

TRUE

Since velocity is constant then it shows that its magnitude and direction both are constant so its speed is also constant.

d. If an object's acceleration is zero, its velocity must be constant.

TRUE

As we know that acceleration is defined as the rate of change in velocity

a = \frac{d\vec v}{dt}

Since we know that if acceleration is 0 then velocity must be constant

e. If an object's speed is constant, then its velocity must be constant.

FALSE

Speed is just the magnitude so we can not say about its direction and hence if speed is constant then velocity may or may not change

7 0
3 years ago
Atomic physicists usually ignore the effect of gravity within an atom. To see why, we may calculate and compare the magnitude of
STatiana [176]

Answer:

2.27\cdot 10^{49}

Explanation:

The gravitational force between the proton and the electron is given by

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p is the proton mass

m_e is the electron mass

r = 3 m is the distance between the proton and the electron

Substituting numbers into the equation,

F_G=(6.67259\cdot 10^{-11} m^3 kg s^{-2})\frac{(1.67262\cdot 10^{-27}kg) (9.10939\cdot 10^{-31}kg)}{(3 m)^2}=1.13\cdot 10^{-68}N

The electrical force between the proton and the electron is given by

F_E=k\frac{q_p q_e}{r^2}

where

k is the Coulomb constant

q_p = q_e = q is the elementary charge (charge of the proton and of the electron)

r = 3 m is the distance between the proton and the electron

Substituting numbers into the equation,

F_E=(8.98755\cdot 10^9 Nm^2 C^{-2})\frac{(1.602\cdot 10^{-19}C)^2}{(3 m)^2}=2.56\cdot 10^{-19}N

So, the ratio of the electrical force to the gravitational force is

\frac{F_E}{F_G}=\frac{2.56\cdot 10^{-19} N}{1.13\cdot 10^{-68}N}=2.27\cdot 10^{49}

So, we see that the electrical force is much larger than the gravitational force.

5 0
3 years ago
Other questions:
  • a girl skateboards with a kinetic energy of 2543.2 J. if the girl and the skateboard have a total mass of 110 kg, what is her sp
    13·1 answer
  • What is the strength of the electric field 0.020 m from a 12 uc charge?
    14·1 answer
  • A person has a mass of 42.0-kg. what is the persons weight on the moon?
    7·1 answer
  • Consider four different types of electromagnetic radiation: microwaves, infrared, ultraviolet, and X–rays. Arrange the types of
    13·1 answer
  • The nuclei of large atoms, such as uranium, with 92 protons, can be modeled as spherically symmetric spheres of charge. The radi
    8·1 answer
  • What's true about the elliptical path that the planets follow around the sun? A. A line can be drawn from the planet to the sun
    14·1 answer
  • Do atoms ever touch​
    10·2 answers
  • A sound wave has a speed of
    6·1 answer
  • At which latitude would tropical rain forests be most likely?
    15·1 answer
  • The metal case of the stove gets hot when the fire is lit. Here is some information about the stove
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!