1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juli2301 [7.4K]
3 years ago
6

In a binary ionic compound, the electrons are

Physics
2 answers:
faltersainse [42]3 years ago
5 0

Answer:

In a binary ionic compound, the electrons are transferred from one atom to another. Therefore the person above was correct. To be more specific the transfering from a nonmetal to a metal.

Explanation:

Naddika [18.5K]3 years ago
3 0

Answer:

Transferred from one atom to another

Explanation:

In a binary ionic compound, the electrons are transferred from one atom to another, thus forming positive and negative charges on the respective atoms involved, and thereby creating electrostatic forces which thus form the ionic bond.

You might be interested in
The relative highness or lowness of a sound is called ______. Multiple Choice pitch timbre dynamics octave
Assoli18 [71]
Pitch is the answer…….
8 0
2 years ago
Will give you brainliest pls help
ExtremeBDS [4]

1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].

2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].

3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].

4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].

4 0
3 years ago
A glass capillary tube with a diameter of 8.5 mm and length 8 cm is filled with a salt solution with a resistivity of 2.5 ?m. Wh
MA_775_DIABLO [31]

Answer:

The resistance is 3.5\times10^{-4}\ \Omega

Explanation:

Given that,

Diameter of tube = 8.5 mm

Length = 8 cm

Resistivity = 2.5 m

We need to calculate the resistance

The resistance is equal to the product of the resistivity and length divided by the area of cross section .

In mathematical form,

R = \dfrac{\rho\times l}{A}

Where, \rho=resistivity

l = length

A = area of cross section

Put the value into the formula

R = \dfrac{2.5\times8\times10^{-2}}{3.14\times(\dfrac{8.5}{2}\times10^{-3})^2}

R=3526.32\ \Omega

R=3.5\times10^{-4}\ \Omega

Hence, The resistance is 3.5\times10^{-4}\ \Omega

6 0
3 years ago
A moving particle encounters an external electric field that decreases its kinetic energy from 9520 eV to 7060 eV as the particl
Sati [7]

Given Information:

KEa = 9520 eV

KEb = 7060 eV

Electric potential = Va = -55 V

Electric potential = Vb = +27 V

Required Information:

Charge of the particle = q = ?

Answer:

Charge of the particle = +4.8x10⁻¹⁸ C

Explanation:

From the law of conservation of energy, we have

ΔKE = -qΔV

KEb - KEa = -q(Vb - Va)

-q = KEb - KEa/Vb - Va

-q = 7060 - 9520/27 - (-55)

-q = 7060 - 9520/27 + 55

-q = -2460/82

minus sign cancels out

q = 2460/82

Convert eV into Joules by multiplying it with 1.60x10⁻¹⁹

q = 2460(1.60x10⁻¹⁹)/82

q = +4.8x10⁻¹⁸ C

6 0
4 years ago
A 0.5 kg mass on a spring undergoes simple harmonic motion with a total mechanical energy of 12 J. If the oscillation amplitude
Darya [45]

Answer:

The frequency of the oscillation is 2.45 Hz.

Explanation:

Given;

mass of the spring, m = 0.5 kg

total mechanical energy of the spring, E = 12 J

Determine the spring constant, k as follows;

E = ¹/₂kA²

kA² = 2E

k = (2E) / (A²)

k = (2 x 12) / (0.45²)

k = 118.519 N/m

Determine the angular frequency, ω;

\omega = \sqrt{\frac{k}{m} } \\\\\omega =  \sqrt{\frac{118.519}{0.5} } \\\\\omega = 15.396 \ rad/s

Determine the frequency of the oscillation;

ω = 2πf

f = (ω) / (2π)

f = (15.396) / (2π)

f = 2.45 Hz

Therefore, the frequency of the oscillation is 2.45 Hz.

8 0
3 years ago
Other questions:
  • 2. A wave on a rope has a wavelength of 2.0 m and a frequency of 2.0 Hz. What is the speed of the
    11·1 answer
  • A car is 200 m from a stop sign and traveling toward the sign at 40.0 m/s. At this time, the driver suddenly realizes that she m
    10·1 answer
  • What does a star color tell you about the amount of energy it emits?
    5·2 answers
  • A ______ is something that can be placed between the sun and the subject to diffuse the light. *
    14·2 answers
  • A car travels for an hour at a speed of 20 km/r, the next two hours at a speed of 65 km/r and the final hour at a speed of 85 km
    13·1 answer
  • Help on springs,I klai
    5·1 answer
  • A faulty thermometer reads 2°C when dipped in ice at 0°C and 95°C when dipped in steam at 100°C. What would this thermometer rea
    6·1 answer
  • A construction worker uses an electrical device to attract fallen nails and sharp objects
    10·1 answer
  • Work done by friction?
    12·2 answers
  • Give an example of a vertical motion with a positive velocity and a negative acceleration. Give an example of a vertical motion
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!