Answer: C. 12.6
Explanation: 2*pi*1.8= 11.304
11.304/0.9= 12.56
Answer: The density of this piece of jewelry is 
Explanation:
To calculate the density, we use the equation:

Mass of piece of jewellery = 130.8 g
Density of piece of jewellery = ?
Volume of piece of jewellery =( 62.4-47.7 ) ml = 14.7 ml =

Putting values in above equation, we get:

Thus density of this piece of jewelry is 
Explanation:
Take north to be positive and south to be negative.
a = (v − v₀) / t
a = (-4.5 m/s − 4.5 m/s) / 8 s
a = -1.125 m/s²
The acceleration is 1.125 m/s² south.
Answer:
Rms speed of the particle will be 
Explanation:
We have given mass of the air particle 
Gas constant R = 8.314 J/mol-K
Temperature is given T = 
We have to find the root mean square speed of the particle
Which is given by 
So rms speed of the particle will be 
Even though the object is weightless, it would need inertia, I.e, you pushing it or any form of transportation. So you would still have to push that 500kg to just keep it moving in space. Say if it were a planet with less gravitational force, it would be weightless.