Answer:
induced emf = 28.65 mV
Explanation:
given data
diameter = 7.3 cm
magnetic field = 0.61
time period = 0.13 s
to find out
magnitude of the induced emf
solution
we know radius is diameter / 2
radius = 7.3 / 2
radius = 3.65 m
so induced emf is dπ/dt = Adb/dt
induced emf = A × ΔB / Δt
induced emf = πr² × ΔB / Δt
induced emf = π (0..65)² × ( 0.61 - (-0.28)) / 0.13
induced emf = 0.0286538 V
so induced emf = 28.65 mV
<u>Answer:</u>
total mass = 410 g
<u>Explanation:</u>
density = 1.8 g/cm³
volume = 200 cm³
density = mass / volume
mass (of liquid) = density x volume
= 1.8 x 200
= 360 g
total mass (beaker + liquid) = 50 + 360 = 410 g [Ans]
Hope this helps!
Explanation:
Recall the equation for time is distance divided by speed. Here you can use that to solve for "t".
Answer:
I am pretty sure it is B.
Explanation:
I hope this helped if it didn't I am truly sorry