P1v1/t1 = p2v2/t2
p1=p2, v1=.2, t1=333, t2=533
we can find v2 from this
be aware, temperature must be in Kelvin.
Answer:
Angle θ = 30.82°
Explanation:
From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ
where;
I_o is the intensity of the polarized wave before passing through the filter.
In this question,
I is 0.708 W/m²
While I_o is 0.960 W/m²
Thus, plugging in these values into the equation, we have;
0.708 W/m² = 0.960 W/m² •cos²θ
Thus, cos²θ = 0.708 W/m²/0.960 W/m²
cos²θ = 0.7375
Cos θ = √0.7375
Cos θ = 0.8588
θ = Cos^(-1)0.8588
θ = 30.82°
An electron has a negative charge. Hope this helps.
Answer:
0.173 m.
Explanation:
The fundamental frequency of a closed pipe is given as
fc = v/4l .................. Equation 1
Where fc = fundamental frequency of a closed pipe, v = speed of sound l = length of the pipe.
Making l the subject of the equation,
l = v/4fc ................ Equation 2
also
v = 331.5×0.6T ................. Equation 3
Where T = temperature in °C, T = 18.0 °c
Substitute into equation 3
v = 331.5+0.6(18)
v = 331.5+10.8
v = 342.3 m/s.
Also given: fc = 494 Hz,
Substitute into equation 2
l = 342.3/(4×494)
l = 342.3/1976
l =0.173 m.
Hence the length of the organ pipe = 0.173 m.
It's angle of reflection must be 41 degrees
we know, by the first law of reflection that angle of incidence is always equal to angle of reflection..........