1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
polet [3.4K]
3 years ago
7

Friction acts in a direction___the applied force.

Physics
1 answer:
Fiesta28 [93]3 years ago
3 0
BBBBBBBBBBBBBBBBBBBBBB
You might be interested in
Look at the four positions of Earth with respect to the sun.
crimeas [40]

Answer:

position 3

Explanation: HOPE IT HELPED

4 0
3 years ago
What is the final step in the fourth stage of technological design
Ierofanga [76]

Answer:

after a product has been improved and approved? reporting the results finding ways to lower costs selling a prototype determining criteria.

Explanation:

5 0
3 years ago
Free Fall: A rock is thrown directly upward from the edge of a flat roof of a building that is 56.3 meters tall. The rock misses
Slav-nsk [51]

Answer:

v₀₁= 5.525 m / s

Explanation

Freefall Formulas :

The sign of acceleration due to gravity  (g) is positive if the object is going down and negative if the object is going up.

vf= v₀+gt  

vf²=v₀²+2*g*h

h= v₀t+ (1/2)*g*t²

Where:  

h: hight in meters (m)    

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

g: acceleration due to gravity in m/s²

Kinematics of the rock from the starting point with vo until it reaches its maximum height:

vf₁= v₀₁-gt₁  :vf₁ =0 to maximum height

0= v₀₁-gt₁

v₀₁ = g*t₁

t₁ =v₀₁ / g      Equation (1)

vf₁²= v₀₁²-2*g*h₁   : vf₁ =0 to maximum height

0 = v₀₁²-2*g*h₁

2*g*h₁ = v₀₁²

h₁ = (v₀₁²)/(2g)   Equation (2)

Kinematics of the rock when it falls from the maximum height until it touches the floor

h₂= v₀₂t+ (1/2)*g*t₂²  v₀₂=vf₁ =0

h₂= 0+ (1/2)*g*t₂²

h₂= (1/2)*g*t₂²   Equation (3)

Equation that relates h₁ to h₂

h₂=  h₁ + 56.3  ,  h₁ = (v₀₁²)/(2g)

h₂= (v₀₁²)/(2g) + 56.3  Equation (4)

Equation that relates t₁ to t₂

t₁ + t₂ =4 s

t₂ =4 -t₁

t₂ =4 -(v₀₁/g )

Calculation of v₀₁

We replace equation 4 and equation 5 in equation 3

(v₀₁²)/(2g) + 56.3 = (1/2)*g*(4 -(v₀₁/g ) )²

(v₀₁²)/(2g) + 56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g )+((v₀₁/g )²)

we eliminate (v₀₁²)/(2g) on both sides of the equation

56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g ))

56.3 = 78.4 - 4*v₀₁

4*v₀₁ =78.4-56.3

v₀₁= (78.4-56.3) / ( 4)

v₀₁= 5.525 m / s

7 0
3 years ago
Weak magnetic fields can be measured at the surface of the brain. Although the currents causing these fields are quite complicat
STALIN [3.7K]

To develop this problem it is necessary to apply the concepts related to a magnetic field in spheres.

By definition we know that the magnetic field in a sphere can be described as

B = \frac{\mu_0}{2}\frac{Ia^2}{(z^2+a^2)^{3/2}}

Where,

a = Radius

z = Distance to the magnetic field

I = Current

\mu_0 = Permeability constant in free space

Our values are given as

D=2a = 16cm \rightarrow diameter of the sphere then,

a = 0.08m

Thus z = a

B = \frac{\mu_0}{2}\frac{Ia^2}{(a^2+a^2)^{3/2}}

B = \frac{\mu_0I}{2(2^{3/2})a}

B = \frac{\mu_0 I}{2^{5/2}a}

Re-arrange to find I,

I = \frac{2^{5/2}Ba}{\mu_0}

I = \frac{2^{5/2}(3*10^{-12})(8*10^{-2})}{4\pi*10^{-7}}

I = 1.08*10^{-6}A

Therefore the current at the pole of this sphere is 1.08*10^{-6}A

5 0
3 years ago
When using a calorimeter, the initial temperature of a metal is 70.4C. The initial temperature of the water is 23.6C. At the end
Sunny_sXe [5.5K]

1) 29.8 C

At the beginning, the metal is at higher temperature (70.4 C) while the water is at lower temperature (23.6 C). When they are put in contact, the metal transfers heat to the water, until they reach thermal equilibrium: at thermal equilibrium the two objects (the metal and the water have same temperature). Therefore, since the temperature of the water at thermal equilibrium is 29.8 C, the final temperature of the metal must be the same (29.8 C).

2) 6.2 C

The temperature change of the water is given by the difference between its final temperature and its initial temperature:

\Delta T = T_f - T_i

where

T_f = 29.8 C\\T_i = 23.6 C

Substituting into the formula,

\Delta T=29.8 C-23.6 C=6.2 C

And the positive sign means that the temperature of the water has increased.

3) -40.6 C

The temperature change of the metal is given by the difference between its final temperature and its initial temperature:

\Delta T = T_f - T_i

where

T_f = 29.8 C\\T_i = 70.4 C

Substituting into the formula,

\Delta T=29.8 C-70.4 C=-40.6 C

And the negative sign means the temperature of the metal has decreased.

5 0
3 years ago
Read 2 more answers
Other questions:
  • The organization of former British colonies that includes Canada, India, Pakistan, and other countries is called the __________.
    9·2 answers
  • Use the data table and information below to answer the following questions.
    15·1 answer
  • The field between two charged parallel plates is kept constant. If the two plates are brought closer together, the potential dif
    12·1 answer
  • What is the average speed, over the first 4.0 s of its motion, of a pebble released from rest off a bridge?
    9·1 answer
  • Light traveling in water (n = 1.33) into an unknown medium.If rhe angles if incidence and refraction are 40 degrees and 25 degre
    10·1 answer
  • Plz help
    7·1 answer
  • How can global climate change be studied
    7·1 answer
  • In a TV set, an electron beam moves with horizontal velocity of 4.8 x 10^7 m/s across the cathode ray tube and strikes the scree
    6·1 answer
  • WILL MARK BRAINLIEST IF CORRECT ANSWERS - Is the reaction below a balanced chemical reaction? How do you know?
    13·2 answers
  • If salt and sand are mixed with water, which methods would be used to separate the mixture?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!