Answer:
The right answer is "8.81 atm".
Explanation:
Given:
V = 5.00 L
Mass = 4900 g
MW = 32 g/mol
T = 350 K
Now,
Number of moles will be:



By using the ideal gas equation, we get
⇒ 
or,
⇒ 
By substituting the values, we get


The question is incomplete, here is the complete question:
A chemist measures the amount of bromine liquid produced during an experiment. She finds that 766.g of bromine liquid is produced. Calculate the number of moles of bromine liquid produced. Round your answer to 3 significant digits.
<u>Answer:</u> The amount of liquid bromine produced is 4.79 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

We are given:
Given mass of liquid bromine = 766. g
Molar mass of liquid bromine,
= 159.8 g/mol
Putting values in above equation, we get:

Hence, the amount of liquid bromine produced is 4.79 moles.
Answer:
-2.86x10³ kJ
Explanation:
The enthalpy of a reaction (ΔH) is defined as the heat produced or consumed by a reaction. In the reaction:
2 C₂H₆(g) + 7 O₂(g) → 4 CO₂(g) + 6 H₂O(g)
The ΔH is the heat envolved in the reaction per 2 moles of C₂H₆. 1.43x10³ kJ are involved when 1 mole reacts. Thus, when 2 moles react, involved heat is:
1.43x10³ kJ ₓ 2 = <em>2.86x10³ kJ</em>. As the reaction is a combustion reaction (Produce CO₂ and H₂O), the heat involved in the reaction is <em>PRODUCED, </em>that means ΔH is negative, <em>-2.86x10³ kJ</em>
Answer:
11.3 g.
Explanation:
Hello there!
In this case, since the combustion of butane is:

Thus, since there is a 1:5 mole ratio between butane and water, we obtain the following mass of water:

Therefore, the resulting mass of water is:

Best regards!