Answer:
speed and time are Vf = 4.43 m/s and t = 0.45 s
Explanation:
This is a problem of free fall, we have the equations of kinematics
Vf² = Vo² + 2g x
As the object is released the initial velocity is zero, let's look at the final velocity with the equation
Vf = √( 2 g X)
Vf = √(2 9.8 1)
Vf = 4.43 m/s
This is the speed with which it reaches the ground
Having the final speed we can find the time
Vf = Vo + g t
t = Vf / g
t = 4.43 / 9.8
t = 0.45 s
This is the time of fall of the body to touch the ground
Distance= Time×Speed
= 1800×1.5
= 2700 m
I am not sure it's right. the question itself is confusing.
-- The acceleration of gravity is 9.8 m/s².
So if there's no air resistance, the speed of a falling object
always increases by 9.8 m/s for every second it falls.
Speed = (original speed) + (gravity x falling time)
-- If it has no vertical speed when it started, then at the end
of 3 seconds, its speed is
= (0) + (9.8 m/s² x 3 sec)
Velocity = 29.4 m/s downward .
First, when the student added the layers of wax over each other, this became a representation of sedimentary rocks.
Then the student folded his/her palm and squeezed the layers of wax. This means that the student applied heat and pressure on the wax (sedimentary rocks)
Referring to the diagram below which represents the rock cycle, we will find that applying heat and pressure on sedimentary rocks would convert these rocks into metamorphic rocks.
Based on the above, the best choice would be:<span>d. Heat and pressure can change sedimentary rocks into metamorphic rocks.</span>