The formula for the change in Gibbs energy of a solid is:
ΔG = Vm ΔP
where, ΔG is change in Gibbs, Vm is molar volume, ΔP is
change in pressure
ΔP = P(final) – P(initial)
P(final) = 1 atm = 101325 Pa
P(initial) = ρ_water *g *h = (1030 kg/m^3) * 9.8 m/s^2 *
2000 m = 20188000 kg m/s^2 = 20188000 Pa
Vm = (950 kg/m^3) * (1000 mol / 891.48 kg) = 1065.64
mol/m^3
So,
ΔG = (1065.64 mol/m^3) * (101325 Pa - 20188000 Pa)
<span>ΔG = -21405164347 J = -21.4 GJ</span>
This is the balanced eq
N2 + 3H2 -> 2NH3
first you need to find mole of N2 by using
mol = mass ÷ molar mass.
mol N2= 20g ÷ (14.01×2)g/mol
=0.7138mol
then look at the coefficient between H2 and NH3.
it is N2:NH3
1:2
0.7138:0.7138×2
0.7138:1.4276 moles
moles of NH3 = 1.4276 moles
The answer to this problem is Beryllium is an alkaline earth metal.
Answer:
I believe it is 3 and 4. I really hope it is but i am positive :)