1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
3 years ago
6

One of the most important parts about creating great photographs starts with choosing what to photograph

Engineering
1 answer:
Sliva [168]3 years ago
7 0
Yeah that is important
You might be interested in
Is CO, an air pollutant? How does it differ from other emissions resulting from the combustion of fossil fuels?
Drupady [299]

Answer:

Explanation:

CO, carbon monoxide is a toxic gas. It casues asphixiation on people and animals by interfering with hemoglobin, not allowing blood to transport oxygen to the cells in the body.

The normal emissions resulting from the combustion  of fussil fuels are CO2 (carbon dioxide) and H2O (water). Carbon monoxide is formed by an incomplete combustion of fossil fuels or carbon containing fuels in general, this not only produces toxic gas, but also is an inefficient combustion that wastes energy.

4 0
3 years ago
A rigid 10-L vessel initially contains a mixture of liquid and vapor water at 100 °C, with a quality factor of 0.123. The mixtur
masya89 [10]

Answer:

Q_{in} = 46.454\,kJ

Explanation:

The vessel is modelled after the First Law of Thermodynamics. Let suppose the inexistence of mass interaction at boundary between vessel and surroundings, changes in potential and kinectic energy are negligible and vessel is a rigid recipient.

Q_{in} = U_{2} - U_{1}

Properties of water at initial and final state are:

State 1 - (Liquid-Vapor Mixture)

P = 101.42\,kPa

T = 100\,^{\textdegree}C

\nu = 0.2066\,\frac{m^{3}}{kg}

u = 675.761\,\frac{kJ}{kg}

x = 0.123

State 2 - (Liquid-Vapor Mixture)

P = 476.16\,kPa

T = 150\,^{\textdegree}C

\nu = 0.2066\,\frac{m^{3}}{kg}

u = 1643.545\,\frac{kJ}{kg}

x = 0.525

The mass stored in the vessel is:

m = \frac{V}{\nu}

m = \frac{10\times 10^{-3}\,m^{3}}{0.2066\,\frac{m^{3}}{kg} }

m = 0.048\,kg

The heat transfer require to the process is:

Q_{in} = m\cdot (u_{2}-u_{1})

Q_{in} = (0.048\,kg)\cdot (1643.545\,\frac{kJ}{kg} - 675.761\,\frac{kJ}{kg} )

Q_{in} = 46.454\,kJ

3 0
3 years ago
A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
kompoz [17]

Answer:

a. The mass flow rate (in lbm/s) is 135lbm/s

b. The temperature (in o F) is 200.8°F

Explanation:

We assume that potential energy and kinetic energy are negligible and the control volume operates at a steady state.

Given

a. The mass flow rate (in lbm/s) is 135lbm/s

b.

m1 = Rate at inlet 1 = 125lbm/s

m2 = Rate at inlet 2 = 10lbm/s

The mass flow rate (in lbm/s) is calculated as m1 + m2

Mass flow rate = 125lbm/s + 10lbm/s

Mass flow rate = 135lbm/s

Hence, the mass flow rate (in lbm/s) is 135lbm/s

b. To calculate the temperature.

First we need to determine the enthalpy h1 at 14.7psia

Using table A-3E (thermodynamics)

h1 = 180.15 Btu/Ibm

h2 at 14.7psia and 60°F = 28.08 Btu/Ibm

Calculating h3 using the following formula

h3 = (h1m1 + h2m2) / M3

h3 = (180.15 * 125 + 28.08 * 10)/135

h3 = 168.8855555555555

h3 = 168.89 Btu/Ibm

To get the final temperature; we make use of table A-2E of thermodynamics.

Because h3 < h1, it means the liquid is at a compressed state.

The corresponding temperature at h3 = 168.89 is 200.8°F

The temperature (in o F) is 200.8°F

6 0
3 years ago
In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in
stellarik [79]

Answer:

V = 125.7m/min

Explanation:

Given:

L = 400 mm ≈ 0.4m

D = 150 mm ≈ 0.15m

T = 5 minutes

F = 0.30mm ≈ 0.0003m

To calculate the cutting speed, let's use the formula :

T = \frac{pi* D * L}{V*F}

We are to find the speed, V. Let's make it the subject.

V = \frac{pi* D * L}{F*T}

Substituting values we have:

V = \frac{pi* 0.4 * 0.15}{0.0003*5}

V = 125.68 m/min ≈ 125.7 m/min

Therefore, V = 125.7m/min

7 0
3 years ago
An unknown relative passes away and bequeaths upon you a small tract of land in Amherst. You decide to build a two-story storage
Ratling [72]

Answer: It does make sense, because I've been involved in these careers and have a long family line of them. And other questions?

Explanation:

7 0
2 years ago
Other questions:
  • A composite wall consists of 20 mm thick steel plate backed by insulation brick (k = 0.39 W/mK) of 50 cm thickness and overlaid
    6·1 answer
  • A fluid flows steadily through a pipe with a uniform cross sectional area. The density of the fluid decreases to half its initia
    6·1 answer
  • Shear plane angle and shear strain: In an orthogonal cutting operation, the tool has a rake angle = 16°. The chip thickness befo
    7·1 answer
  • If you are involved in a collision and your vehicle is blocking the flow of traffic, you should
    5·1 answer
  • After adjusting your seat, your___ should be as closest possible to the back rest.
    14·1 answer
  • In a hydraulic system, a 100.-newton force is applied to a small piston with an area of 0.0020 m2. What pressure, in pascals, wi
    13·1 answer
  • B) Calculate the FS against uplift and calculate effoctive stress at the base level for water
    11·1 answer
  • Phosphorus and nitrogen are included in which category of water pollutants?
    12·1 answer
  • Instructions: For each problem, identify the appropriate test statistic to be use (t test or z-test). Then compute z or t value.
    14·1 answer
  • The sum of forces on node 2 (upper-left) is ______.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!