Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
0.037 A
Explanation:
Magnetic field = B = 1.00 e-4 T
Length = L = 0.380 m
Number of turns = 810
B = μ₀ N I / L
⇒ Current = I = B L / μ₀ N = ( 1 e-4) ( 0.380) / (4π × 10⁻⁷)(810)
= 0.037 A = 37.3 mA
Protons, neutrons, and electrons<span> are the three main subatomic particles found in an atom.</span>
New York because of the lady of all the people and excitement