Answer:
0.42%
Explanation:
<em>∵ pH = - log[H⁺].</em>
2.72 = - log[H⁺]
∴ [H⁺] = 1.905 x 10⁻³.
<em>∵ [H⁺] = √Ka.C</em>
∴ [H⁺]² = Ka.C
∴ ka = [H⁺]²/C = (1.905 x 10⁻³)²/(0.45) = 8.068 x 10⁻⁶.
<em>∵ Ka = α²C.</em>
Where, α is the degree of dissociation.
<em>∴ α = √(Ka/C) </em>= √(8.065 x 10⁻⁶/0.45) = <em>4.234 x 10⁻³.</em>
<em>∴ percentage ionization of the acid = α x 100</em> = (4.233 x 10⁻³)(100) = <em>0.4233% ≅ 0.42%.</em>
Answer:
The frequency of the photon that can dissociate dichlorine is 6.02×10¹⁴ Hz
Explanation:
The energy of a photon is given by the equation:
E=h·f
E=3.99×10⁻¹⁹ J/molecule
h (Planck's constant)=6.626×10⁻³⁴ m²·kg/s
∴ f=E/h
=6.02×10¹⁴ s⁻¹= 6.02×10¹⁴ Hz
Answer:
sodium hexachloroplatinate(IV)- Na2[PtCl6]
dibromobis(ethylenediamine)cobalt(III) bromide- [Co(en)2Br2]Br
pentaamminechlorochromium(III) chloride-[Cr(NH3)5Cl]Cl2
Explanation:
The formulas of the various coordination compounds can be written from their names taking cognisance of the metal oxidation state as shown above. The oxidation state of the metal will determine the number of counter ions present in the coordination compound.
The number ligands are shown by subscripts attached to the ligand symbols. Remember that bidentate ligands such as ethylenediamine bonds to the central metal ion via two donors.
Explanation:
An equation is said to be balanced when the number of atoms on both reactant and product side are equal in number.
Whereas an equation where electrolytes in an aqueous solution are represented as dissociated ions is known as an ionic equation.
For example,
can be represented in ionic form as follows.

Now, cancelling the common ions present on both sides of the equation. The resulting, ionic equation will be as follows.

Answer:
12 oxygen atoms are in 4 molecules of HNO3?
Explanation:
the amounts of atoms of all the component in HNO3, which are 1 atom of Hydrogen, 1 atom of Nitrogen and 3 atoms of Oxygen.