The star with apparent magnitude 2 is more brighter than 7.
To find the answer, we have to know about apparent magnitude.
<h3>What is apparent magnitude?</h3>
- 100 times as luminous as a star with an apparent brightness of 7 is a star with a magnitude of 2.
- The apparent magnitude of bigger stars is always smaller.
- The brightest star in the night sky is Sirius.
- The brightness of a star or other celestial object perceived from Earth is measured in apparent magnitude (m).
- The apparent magnitude of an object is determined by its inherent luminosity, its distance from Earth, and any light extinction brought on by interstellar dust in the path of the observer's line of sight.
Thus, we can conclude that, the star with apparent magnitude 2 is more brighter than 7.
Learn more about the apparent magnitude here:
brainly.com/question/350008
#SPJ4
Answer: a = 0.4m/s^2 - 9.8*c where c is the coefficient of kinetic friction of the surface
Explanation: We know that, by the second Newton's law, a = F/m
where a is the acceleration, F is the net force and m is the mass of the object.
Then, if the surface is frictionless, the total force applied in the object is 10N, and the mass of the object is 25kg, so the acceleration is:
a =10N/25kg = 0.4m/s^2.
But if the surface is frictional, there will be a force of friction applied in the mass (this depends on the coefficient of friction and the weight of the mass), this means that the acceleration will be reduced.
If = -(9.8*25)*c
where c is a number that is bigger than 0 and smaller than 1, is called the coefficient of kinetic friction.
So the total force is now:
F = (10 - 9.8*25*c)
Then, the acceleration in a frictional surface is equal to:
a = (10 - 9.8*25*c)/25 = 0.4m/s^2 - 9.8*c
Answer:
This question is asking to identify the following variables:
Independent variable (IV): TYPE OF SOIL
Dependent variable (DV): HEIGHT AND NUMBER OF LEAVES
Control group: None in this experiment
Constant: SAME ROSE PLANT, SAME TIME INTERVAL (1 WEEK)
Explanation:
Independent variable in an experiment is the variable that is manipulated or changed by the experimenter in order to effect a measurable outcome. In this case, the independent variable is the TYPE OF SOIL used.
Dependent variable is the measurable variable that responds to changes made to the independent variable. In this experiment, the dependent variable is the HEIGHT AND NUMBER OF LEAVES of each rose.
Constants or control variable is the variable that is kept unchanged or constant for all groups throughout the experiment. In this experiment, the constants are SAME ROSE PLANT, SAME TIME INTERVAL (1 WEEK).
Control group are the groups that does not receive the experimental treatment. In this case, all the groups received the experimental treatment (different soil types). Hence, there is no control
Answer:
A collision in which both total momentum and total kinetic energy are conserved
Explanation:
In classical physics, we have two types of collisions:
- Elastic collision: elastic collision is a collision in which both the total momentum of the objects involved and the total kinetic energy of the objects involved are conserved
- Inelastic collision: in an inelastic collision, the total momentum of the objects involved is conserved, while the total kinetic energy is not. In this type of collisions, part of the total kinetic energy is converted into heat or other forms of energy due to the presence of frictional forces. When the objects stick together after the collision, the collisions is called 'perfectly inelastic collision'