1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
3 years ago
11

1.) Calculate the mass of a solid gold rectangular bar that has dimensions lwh = 4.30 cm ✕ 14.0 cm ✕ 27.0 cm. (The density of go

ld is 19.3 ✕ 103 kg/m3.)
kg


2.)A brass ring of diameter 10.00 cm at 17.3°C is heated and slipped over an aluminum rod of diameter 10.01 cm at 17.3°C. Assume the average coefficients of linear expansion are constant.

(a) To what temperature must the combination be cooled to separate the two metals?


(b) What if the aluminum rod were 10.06 cm in diameter?
​
Physics
1 answer:
joja [24]3 years ago
6 0

Answer:

1) m = 0.3137 kg

2a)T_f = -181.7°C

2b) T_f = -1176.97°C

Explanation:

1) We are given;

Length; l = 4.30 cm = 0.043 m

Width; w = 14.0 cm = 0.014 m

height; h = 27.0 cm = 0.027 m

density of gold; ρ = 19.3 × 10³ kg/m³

Formula for the density is known as;

ρ = mass/volume

Thus;

m =ρV

m = 19.3 × 10³ × (lwh)

m = 19.3 × 10³ × (0.043 × 0.014 × 0.027)

m = 0.3137 kg

2a) We are given;

Diameter of brass; L_br = 10 cm

Diameter of aluminum; L_al = 10.01 cm

Now, to some for change in temperature we will use the formula;

L_f = L_i + αL_i(Δt)

Where α is coefficient of expansion.

Now, for the ring to be removed from the rod, the final diameter of the brass has to be same as the aluminium.

Thus;

L_f(brass) = L_f(aluminium)

From table attached, α_brass ≈ 19 × 10^(-6) /°C

Also, α_aluminium ≈ 24 × 10^(-6) /°C

Thus;

L_f(brass) = 10 + (19 × 10^(-6) × 10 × (Δt))

Similarly,

L_f(aluminium) = 10.01 + (24 × 10^(-6) × 10.01 × (Δt))

Since L_f(brass) = L_f(aluminium), then;

10 + (19 × 10^(-6) × 10 × (Δt)) = 10.01 + (24 × 10^(-6) × 10.01 × (Δt))

Rearranging, we have;

10.01 - 10 = (19 × 10^(-6) × 10 × (Δt)) - (24 × 10^(-6) × 10.01 × (Δt))

0.01 = Δt(-50.24 × 10^(-6))

Δt = 0.01/(-50.24 × 10^(-6))

Δt ≈ -199°C

Thus, temperature at which the combination must be cooled to separate the two metals is;

T_f = T_i + Δt

T_f = 17.3 + (-199)

T_f = -181.7°C

2b) Diameter of aluminum is now;

L_al = 10.06 cm

Thus;

10.06 - 10 = (19 × 10^(-6) × 10 × (Δt)) - (24 × 10^(-6) × 10.01 × (Δt))

0.06 = Δt(-50.24 × 10^(-6))

Δt = 0.06/(-50.24 × 10^(-6))

Δt = -1194.27°C

T_f = 17.3 + (-1194.27)

T_f = -1176.97°C

You might be interested in
What is the speed of a wave that has a frequency of 45 Hz and a wavelength of 0.1 meters?
Yuri [45]
<span>λν=c
(wavelength x frequency = speed)

speed = 45 x 0.1
= 4.5 m/s</span>
6 0
3 years ago
Read 2 more answers
In 1995 a research group led by Eric Cornell and Carl Wiemann at the University of Colorado successfully cooled Rubidium atoms t
saveliy_v [14]

Answer:

0.00493 m/s

Explanation:

T = Temperature of the isotope = 85 nK

R = Gas constant = 8.341 J/mol K

M = Molar mass of isotope = 86.91 g/mol

Root Mean Square speed is given by

v_r=\sqrt{\dfrac{3RT}{M}}\\\Rightarrow v_r=\sqrt{\dfrac{3\times 8.314\times 85\times 10^{-9}}{86.91\times 10^{-3}}}\\\Rightarrow v_r=0.00493\ m/s

The Root Mean Square speed is 0.00493 m/s

6 0
4 years ago
At the nose of a missile in flight, the pressure and temperature are 5.6 atm and 850°R, respectively. Calculate the density and
Contact [7]

To solve this problem we will apply the definition of the ideal gas equation, where we will clear the density variable. In turn, the specific volume is the inverse of the density, so once the first term has been completed, we will simply proceed to divide it by 1. According to the definition of 1 atmosphere, this is equivalent in the English system to

1atm = 2116lb/ft^2

The ideal gas equation said us that,

PV = nRT

Here,

P = pressure

V = Volume

R = Gas ideal constant

T = Temperature

n = Amount of substance (at this case the mass)

Then

\frac{n}{V} = \frac{P}{RT}

The amount of substance per volume is the density, then

\rho = \frac{P}{RT}

Replacing with our values,

\rho = \frac{5.6*2116}{1716*850}

\rho = 0.00812slug/ft^3

Finally the specific volume would be

v = \frac{1}{\rho}

v = 123ft^3/slug

6 0
3 years ago
A wire is used as a heating element that has a resistance that is fairly independent of its temperature within its operating ran
dedylja [7]

Answer:

Double the current

Explanation:

The energy delivered by the heater is related to the current by the following relation:

E= I^{2}R t

let R * t = k ( ∴ R and t both are constant)

so E= k I^{2}

Now let:

E2= k I₂^2

E2= 4E

⇒ k I₂^2= 4* k I^{2}

Cancel same terms on both sides.

I₂^2= 4* I^{2}

taking square-root on both sides.

√I₂^2 = √4* I^2

⇒I₂= 2I

If we double the current the energy delivered each minute be 4E.

3 0
3 years ago
Which terrestrial planet exhibits retrograde rotation?.
Sati [7]

Answer:

Planets that are farther from the sun than the earth (all but Mercury and Venus) will exhibit retrograde motion.

If the position of the planet is observed relative to the background stars, the planet will appear to move backward relative to the stars when the earth is moving in an Eastward direction faster than the planet, and the planet appears to move backwards relative to the stars

(The planet will be on the side of the earth that is opposite that of the sun)

3 0
2 years ago
Other questions:
  • Which statement best describes resistance? Resistance is
    7·2 answers
  • Which statement about atmospheric pressure near earth's surface is true
    6·1 answer
  • When 15 newtons of force is applied to the 0.5 kg book, the friction keeps the book from sliding down the wall. What is the mini
    10·2 answers
  • The overall magnification of a compound microscope with an objective lens magnification of 5 and an eye piece magnification of 3
    9·2 answers
  • A net force of 10 N accelerates an object at 5.0 m/s^2. What is the mass of the object? A. 2 kg B. 10 kg C. 5 kg D. 20 kg
    13·1 answer
  • Which state of matter exist in an extreme high temperature found on stars
    11·2 answers
  • When a wire with a current is placed in a magnetic field,
    13·2 answers
  • Figure 2 shows the junction of three wires, F, G and H, in a circuit. The current in wire F is 6.0A.
    5·1 answer
  • Sa fait combien 2×5÷6​
    7·2 answers
  • What happens to the period of the motion when the spring constant increases? Does it increase, decrease, or stay the same?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!