1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hjlf
3 years ago
13

A pendulum bob is given velocity u =

Physics
1 answer:
Mama L [17]3 years ago
7 0

Answer:

V = P = 0 m/s

Explanation:

When a pendulum bob is given an initial displacement or the initial velocity, it starts to execute periodic motion or simple harmonic motion. During this motion the kinetic and potential energy keeps interconverting. The kinetic energy becomes maximum at the lowest point, that is the mean point. Hence, the velocity is maximum at this point, as well. Similarly, at both extreme positions the potential energy becomes maximum due to maximum height, while the kinetic energy becomes zero at the highest point, that is extreme positions. At these, positions the velocity will be minimum and it will be zero due to zero kinetic energy. Hence, at both extreme positions the bob stops momentarily before, reversing the direction. Hence,

<u>V = P = 0 m/s</u>

You might be interested in
A projectile of mass 2.0 kg is fired in the air at an angle of 40.0 ° to the horizon at a speed of 50.0 m/s. At the highest poin
tekilochka [14]

Answer:

a) The fragment speeds of 0.3 kg is 33.3 m / s on the y axis

                                         0.7 kg is 109.4 ms on the x axis

b)  Y = 109.3 m

Explanation:

This is a moment and projectile launch exercise.

a) Let's start by finding the initial velocity of the projectile

       sin 40 = voy / v₀

       v_{oy} = v₀ sin 40

       v_{oy} = 50.0 sin40

       v_{oy} = 32.14 m / s

       cos 40 = v₀ₓ / V₀

       v₀ₓ = v₀ cos 40

       v₀ₓ = 50.0 cos 40

       v₀ₓ = 38.3 m / s

Let us define the system as the projectile formed t all fragments, for this system the moment is conserved in each axis

Let's write the amounts

Initial mass of the projectile M = 2.0 kg

Fragment mass 1 m₁ = 1.0 kg and its velocity is vₓ = 0 and v_{y} = -10.0 m / s

Fragment mass 2 m₂ = 0.7 kg moves in the x direction

Fragment mass 3 m₃ = 0.3 kg moves up (y axis)

Moment before the break

X axis

     p₀ₓ = m v₀ₓ

Y Axis y

    p_{oy} = 0

After the break

X axis

   p_{fx} = m₂ v₂

Axis y

     p_{fy} = m₁ v₁ + m₃ v₃

Let's write the conservation of the moment and calculate

Y Axis  

     0 = m₁ v₁ + m₃ v₃

Let's clear the speed of fragment 3

     v₃ = - m₁ v₁ / m₃

     v₃ = - (-10) 1 / 0.3

     v₃ = 33.3 m / s

X axis

     M v₀ₓ = m₂ v₂

     v₂ = v₀ₓ M / m₂

     v₂ = 38.3  2 / 0.7

     v₂ = 109.4 m / s

The fragment speeds of 0.3 kg is 33.3 m / s on the y axis

                                         0.7 kg is 109.4 ms on the x axis

b) The speed of the fragment is 33.3 m / s and has a starting height of where the fragmentation occurred, let's calculate with kinematics

       v_{fy}² = v_{oy}² - 2 gy

       0 =  v_{oy}²-2gy

       y =  v_{oy}² / 2g

       y = 32.14² / 2 9.8

       y = 52.7 m

This is the height where the break occurs, which is the initial height for body movement of 0.3 kg

      v_{f}² =  v_{y}² - 2 g y₂

      0 =  v_{y}² - 2 g y₂

     y₂ =  v_{y}² / 2g

     y₂ = 33.3²/2 9.8

     y₂ = 56.58 m

Total body height is

      Y = y + y₂

      Y = 52.7 + 56.58

     Y = 109.3 m

8 0
3 years ago
A square wave has amplitude 0 V for the low voltage and 4 V for the high voltage. Calculate the average voltage by integrating o
Margarita [4]

Answer:

V_{average} = \frac{1}{2}  V_o  ,     V_{average} = 2 V

Explanation:

he average or effective voltage of a wave is the value of the wave in a period

            V_average = ∫ V dt

in this case the given volage is a square wave that can be described by the function

           V (t) = \left \{ {{V=V_o \ \ \  t<  \tau /2} \atop {V=0 \ \  \ \  t> \tau /2 }   } \right.

to substitute in the equation let us separate the into two pairs

             V_average = \int\limits^{1/2}_0 {V_o} \, dt + \int\limits^1_{1/2} {0} \, dt

             V_average = V_o \ \int\limits^{1/2}_0 {} \, dt

             V_{average} = \frac{1}{2}  V_o

we evaluate  V₀ = 4 V

             V_{average} = 4 / 2)

             V_{average} = 2 V

6 0
3 years ago
There are four charges, each with a magnitude of 4.25 C. Two are positive and two are negative. The charges are fixed to the cor
VMariaS [17]

Answer:

 F = 7.68 10¹¹ N,  θ = 45º

Explanation:

In this exercise we ask for the net electric force. Let's start by writing the configuration of the charges, the charges of the same sign must be on the diagonal of the cube so that the net force is directed towards the interior of the cube, see in the attached numbering and sign of the charges

The net force is

          F_ {net} = F₂₁ + F₂₃ + F₂₄

bold letters indicate vectors. The easiest method to solve this exercise is by using the components of each force.

let's use trigonometry

          cos 45 = F₂₄ₓ / F₂₄

          sin 45 = F_{24y) / F₂₄

          F₂₄ₓ = F₂₄ cos 45

          F_{24y} = F₂₄ sin 45

let's do the sum on each axis

X axis

          Fₓ = -F₂₁ + F₂₄ₓ

          Fₓ = -F₂₁₁ + F₂₄ cos 45

Y axis  

         F_y = - F₂₃ + F_{24y}

         F_y = -F₂₃ + F₂₄ sin 45

They indicate that the magnitude of all charges is the same, therefore

         F₂₁ = F₂₃

Let's use Coulomb's law

         F₂₁ = k q₁ q₂ / r₁₂²

       

the distance between the two charges is

         r = a

         F₂₁ = k q² / a²

we calculate F₂₄

           F₂₄ = k q₂ q₄ / r₂₄²

the distance is

           r² = a² + a²

           r² = 2 a²

         

we substitute

           F₂₄ = k  q² / 2 a²

we substitute in the components of the forces

          Fx = - k \frac{q^2}{a^2} +  k \frac{q^2}{2 a^2}  \ cos 45

          Fx = k \frac{q^2}{a^2}  ( -1 + ½ cos 45)

          F_y = k \frac{q^2}{a^2} ( -1 +  ½ sin 45)    

         

We calculate

            F₀ = 9 10⁹ 4.25² / 0.440²

            F₀ = 8.40 10¹¹ N

       

            Fₓ = 8.40 10¹¹ (½ 0.707 - 1)

            Fₓ = -5.43 10¹¹ N

         

remember cos 45 = sin 45

             F_y = - 5.43 10¹¹  N

We can give the resultant force in two ways

a) F = Fₓ î + F_y ^j

          F = -5.43 10¹¹ (i + j)   N

b) In the form of module and angle.

For the module we use the Pythagorean theorem

          F = \sqrt{F_x^2 + F_y^2}

          F = 5.43 10¹¹  √2

          F = 7.68 10¹¹ N

in angle is

           θ = 45º

7 0
3 years ago
I need help on putting this diagram in order.
morpeh [17]
In what type of order are you supposed to put it in?
3 0
3 years ago
4. How much time does it take for a student running at a speed of 5 m/s to cover a distance of 2,000 m?
Monica [59]

Answer:

6 Minutes 40 Seconds or 400 Seconds

Explanation:

Time to cover a distance of 5m = 1 Second

Time to cover a distance of 2000m = 2000÷5

= 400 Seconds

After converting 400 Seconds into minutes it will become 6 minutes 40 seconds.

Those who found this helpful please give me a Thanks to support me. So, I can explain other questions more clearly. If you don't want to mark me Brainliest don't mark. But, please give me a Thanks.

6 0
3 years ago
Other questions:
  • A 0.03-kg bullet is fired with a horizontal velocity of 470 m/s and becomes embedded in block B which has a mass of 3 kg. After
    10·2 answers
  • Which sentence uses the correct adverb to make a comparison?
    8·2 answers
  • Which example best describes a restoring force?
    7·1 answer
  • Select the correct answer.
    7·2 answers
  • A sound wave in a steel rail has a frequency of 620 hz and a wavelength of 10.5m. What is the speed of sound in steel?
    8·1 answer
  • Two capacitors give an equivalent capacitance of 9.42 pF when connected in parallel and an equivalent capacitance of 1.68 pF whe
    10·1 answer
  • Find the voltage drop (in volt) along a 93.4 meter long 10 gauge copper wire carrying acurrent of 72.5 A. The diameter of a 10 g
    5·1 answer
  • Which animal have no teeth​
    9·2 answers
  • Describe an example of acceleration and explain how velocity is changing.
    14·2 answers
  • Who was the first scientist to explore the moon with a telescope? A Isaac Newton B Johannes Kepler C Nicolaus Copernicus D Galil
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!