Answer: A) 
Explanation:
The equation for the moment of inertia
of a sphere is:
(1)
Where:
is the moment of inertia of the planet (assumed with the shape of a sphere)
is the mass of the planet
is the radius of the planet
Isolating
from (1):
(2)
Solving:
(3)
Finally:
Therefore, the correct option is A.
C. Insulator
It COULD be semi-insulator but i'm sure its C
If it is completely elastic, you can calculate the velocity of the second ball from the kinetic energy
<span>v1 = velocity of #1 </span>
<span>v1' = velocity of #1 after collision </span>
<span>v2' = velocity of #2 after collision. </span>
<span>kinetic energy: v1^2 = v1' ^2 + v2' ^2 (1/2 and m cancel out) </span>
<span>5^2 = 4.35^2 + v2' ^2 </span>
<span>v2 = 2.46 m/s <--- ANSWER</span>
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.