The Pacific is loosely shaped like a triangle, opening widely to the south but barely at all to the north, while the Atlantic is shaped like an hourglass with the choke point located very loosely at the equator (somewhat south of it in the west).
The way these supersaturated solutions are made is: A. The water would need to be heated to a higher temperature, which would give molecules and ions more kinetic energy, increasing solubility.
Solubility is simply a measure of how readily a substance is able to dissolve in a solvent to form a solution. Thus, a substance is soluble when it dissolves completely in a solvent and it is considered to be insoluble when it does not dissolve in a solvent or if it only dissolves partially.
A supersaturated solution can be defined as a solution that contains more solute than the equilibrium amount.
Generally, supersaturated solutions of solids in water are typically used for the creation of crystals because they are able to hold more of the solute than they would at room temperature.
In order to create these supersaturated solutions, the water should be heated to a higher temperature, so that the water molecules and ions can gain more kinetic energy and thereby increasing solubility.
In conclusion, heating the water to a higher temperature causes the water molecules and ions to gain more kinetic energy and thereby increasing solubility..
Read more: brainly.com/question/24058779
Answer:
7.0 m
Explanation:
Step 1: Given data
Initial speed of the ball (u): 1.8 m/s
Acceleration (a): 6.1 m/s²
Final speed of the ball (v): 9.4 m/s
Step 2: Calculate the displacement (s) of the ball
The ball is moving with a uniformly accelerated rectilinear motion. We can calculate the displacement using the following suvat equation.
v² = u² + 2 × a × s
s = (v² - u²)/2 × a
s = [(9.4 m/s)² - (1.8 m/s)²]/2 × 6.1 m/s²
s = 7.0 m
Knowing the direction of a force is important because it helps someone know the motion of the object. if you use a free body diagram, then it becomes easy to see all the forces being applied to an object. if there is more force going one way, the object is accelerating in that direction. if all the forces cancel each other out, then the object is at a constant speed or is at rest.