There is no movement in line C and the greatest velocity occurs at line D. The answers are:
1. 0.5 m/s
2. 0.25 m/s
3. 14m and -2m
4. -1 m/s
<h3>
What is Position - time Graph ?</h3>
Position time graph is the graph of distance or displacement against time. The slope of the graph is velocity.
The given positions of four objects as a function of time are shown
on the graph to the right.
1.) The velocity of object A will be the slope m of the line A.
Slope m = Δx / Δt
m = (4 - 0) / (8 - 0)
m = 4 / 8
m = 0.5 m/s
Velocity at A = 0.5 m/s
2.) The average velocity of object B will be the slope m of the line B.
Slope m = Δx / Δt
m = (6 - 4) / (8 - 0)
m = 2 / 8
m = 0.25 m/s
The average velocity of object B is 0.25s
3.) The object moved a total distance during the first eight seconds will be 4m for A, 2m for B, and 8m for D
Total distance = 4 + 2 + 8 = 14m
It’s net displacement during the same time will be 2. That is,
Displacement = 8 - 6 = -2m
4.) The greatest speed occurred at line D. The velocity of the object moving at the greatest speed will be the slope of the line D
V = -Δx / Δt
V = -8/8
V = -1 m/s
Therefore, there is no movement in line C and the greatest velocity occurs at line D.
Learn more about velocity time graph here :brainly.com/question/769606
#SPJ1
Answer:
3.974 Joule
Explanation:
Diameter of ring = 7.7 cm
a = Distance from the center = d/2 = 3.85 cm = 0.0385 m
Q = Charge = 5 mC
q = Charge to move = 3.4 mC
k = Coulomb constant = 9×10⁹ Nm²/C²
Work done will be equal to Potential energy when mass is at center

∴ Work to move a tiny 3.4 mC charge from very far away to the center of the ring is 3.974 Joule
If u is about 0.2 (no unit) then the whole left side is zero.
<h2>
Kinetic energy just before hitting the floor is 324.57 J</h2>
Explanation:
Weight of volleyball player = 650 N
That is
Mass x Acceleration due to gravity = 650
Mass x 9.81 = 650
Mass = 66.26 kg
We also have equation of motion v² = u² + 2as
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Final velocity, v = ?
Displacement, s = 0.5 m
Substituting
v² = u² + 2as
v² = 0² + 2 x 9.81 x 0.5
v = 3.13 m/s
Velocity with which he lands on ground is 3.13 m/s
We have kinetic energy = 0.5 x Mass x Velocity²
Substituting
Kinetic energy = 0.5 x 66.26 x 3.13²
Kinetic energy = 324.57 J
Kinetic energy just before hitting the floor is 324.57 J