The answer is: the mass of oxygen is 16.95 grams.
The overall balanced photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂.
m(C₆H₁₂O₆) = 15.90 g; mass of glucose.
n(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆).
n(C₆H₁₂O₆) = 15.9 g ÷ 180.18 g/mol.
n(C₆H₁₂O₆) = 0.088 mol; amount of glucose.
From chemical reaction: n(C₆H₁₂O₆) : n(O₂) = 1 : 6.
n(O₂) = 6 · 0.088 mol.
n(O₂) = 0.53 mol; amount of oxygen.
m(O₂) = 0.53 mol · 32.00 g/mol.
m(O₂) = 16.95 g; mass of oxygen.
1. A soluble salt can be prepared by reacting an acid with a suitable insoluble reactant including:
a metal
a metal oxide
a carbonate
3. I don’t know this one
4. A term base or glossary is a database containing single words or expressions related to a specific subject.
5. Strong acid is an acid that ionizes completely in aqueous solution. It always loses a proton (H+) when dissolved in water. Weak acid is an acid that ionizes partially in a solution. ... Because the rate of reaction depends upon the degree of dissociation αand strong acids have higher degrees of dissociation.
im not sure of the rest
<span>The smallest unit of a compound is called a molecule. The correct option among all the options that are given in the question is the second option or the penultimate option or option "B". The other choices are incorrrect and can be negated. I hope that this is the answer that has actually come to your desired help.</span>
Answer:
We identify nucleic acid strand orientation on the basis of important chemical functional groups. These are the <u>phosphate</u> group attached to the 5' carbon atom of the sugar portion of a nucleotide and the <u>hydroxyl</u> group attached to the <u>3'</u> carbon atom
Explanation:
Nucleic acids are polymers formed by a phosphate group, a sugar (ribose in RNA and deoxyribose in DNA) and a nitrogenous base. In the chain, the phosphate groups are linked to the 5'-carbon and 3'-carbon of the ribose (or deoxyribose) and the nitrogenous base is linked to the 2-carbon. Based on this structure, the nucleic acid chain orientation is identified as the 5'-end (the free phosphate group linked to 5'-carbon of the sugar) and the 3'-end (the free hydroxyl group in the sugar in 3' position).
Answer:
The molarity of the solution: 0,27M
Explanation:
First , we calculate the weight of 1 mol of NaCl:
Weight 1mol NaCl= Weight Na + Weight Cl= 23 g+ 35, 5 g= 58, 5 g/mol
58,5 g---1 mol NaCl
64 g--------x= (64 g x1 mol NaCl)/58,5 g= 1, 09 mol NaCl
A solution molar--> moles of solute in 1 L of solution:
4 L-----1,09 mol NaCl
1L----x0( 1L x1,09 mol NaCl)/4L =0,27moles NaCl--->0,27M