<span>a planes engines are designed to move it forward at high speed. That makes air flow rapidly over the </span>wings<span>, which throw the air down toward the </span>ground<span>, generating an upward force called </span>lift<span> that overcomes the </span>plane's<span> weight and holds it in the sky. ... The </span>wings<span> force the air downward and that pushes the </span>plane<span> upward</span>
Answer:
Explanation:
The ball was moving with velocity of 20 m /s earlier in horizontal direction . Due to kicking, additional V velocity was added to it at 40° because he kicked it at this angle but the ball travelled in the direction of resultant which was making an angle of 30° with the horizontal .
From the relation of inclination of resultant
Tan θ = V sinα / (u + V cosα) where α is angle between u and V , θ is inclination of resultant
Tan30 = 

20 + .766 V = 1.11 V
20 = .344 V
V = 58 m /s
To know the force , we shall apply concept of impulse
F x t = mv , F is force for time t creating a change of momentum mv
F x .1 = .4 x 58
F = 232 N
Answer:
1600 W
Explanation:
Power is the product of force and distance, divided by time.
P = (120 kg)(10 m/s²)(40 m)/(30 s) = 1600 kg·m²/s³ = 1600 W
Answer:
The block+bullet system moves 4 m before being stopped by the frictional force.
Explanation:
Using the law of conservation of llinear momentum and the work energy theorem, we can obtain this.
According to Newton's second law of motion
Momentum before collision = Momentum after collision
Momentum before collision = (0.02×400) + 0 (stationary block)
Momentum before collision = 8 kgm/s
Momentum after collision = (2+0.02)v
8 = 2.02v
v = 3.96 m/s.
According to the work-energy theorem,
The kinetic energy of the block+bullet system = work done by Friction to stop the motion of the block+bullet system
Kinetic energy = (1/2)(2.02)(3.96²) = 15.84 J
Work done by the frictional force = F × (distance moved by the force)
F = μmg = 0.2(2.02)(9.8) = 3.96 N
3.96d = 15.84
d = (15.84/3.96) = 4 m