Answer: 4.8 s
Explanation:
We have the following data:
the mass of the raft
the force applied by Sawyer
the raft's final speed
the raft's initial speed (assuming it starts from rest)
We have to find the time 
Well, according to Newton's second law of motion we have:
(1)
Where
is the acceleration, which can be expressed as:
(2)
Substituting (2) in (1):
(3)
Where 
Isolating
from (3):
(4)
Finally:
Answer:
The minimum distance between two points on the object that are barely resolved is 0.26 mm
The corresponding distance between the image points = 0.0015 m
Explanation:
Given
focal length f = 50 mm and maximum aperture f>2
s = 9.0 m
aperture = 25 mm = 25 *10^-3 m
Sin a = 1.22 *wavelength /D
Substituting the given values, we get –
Sin a = 1.22 *600 *10^-9 m /25 *10^-3 m
Sin a = 2.93 * 10 ^-5 rad
Now
Y/9.0 m = 2.93 * 10 ^-5
Y = 2.64 *10^-4 m = 0.26 mm
Y’/50 *10^-3 = 2.93 * 10 ^-5
Y’ = 0.0015 m
Answer:
B- They both have travelled equal distances in 7 minutes
Hope this helps!
Answer:
The value of tension on the cable T = 1065.6 N
Explanation:
Mass = 888 kg
Initial velocity ( u )= 0.8 
Final velocity ( V ) = 0
Distance traveled before come to rest = 0.2667 m
Now use third law of motion
=
- 2 a s
Put all the values in above formula we get,
⇒ 0 =
- 2 × a ×0.2667
⇒ a = 1.2 
This is the deceleration of the box.
Tension in the cable is given by T = F = m × a
Put all the values in above formula we get,
T = 888 × 1.2
T = 1065.6 N
This is the value of tension on the cable.