Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
<span> I got (a). The answer was 7.53. But when I try to solve (d), I keep getting the wrong answer. I subtracted the moles of NaOH from the acid and added the moles to the base. Then I did Ka = (x*([NaClO]+x))/([HClO - x) and then I found the pH</span>
Answer:
In medicine, genetic engineering has been used to mass-produce insulin, human growth hormones, follistim, human albumin, monoclonal antibodies, antihemophilic factors, vaccines, and many other drugs. In research, organisms are genetically engineered to discover the functions of certain genes.
Explanation:
Answer:
Option A and D are correct.
Unstable species react rapidly.
Stable species do not react rapidly.
Explanation:
The complete question is attached to this solution.
The more stable a reactant is, the less reactive it will be. A stable reactant has a very stable structure in which it will avoid any perturbations. And for a reaction to occur, the bonds in the reactant must break down to form the products. A stable reactant has very strong bonds that aren't easy to break down, hence, reactions involving very stable reactants do not proceed rapidly.
And the more unstable a reactant specie is, the more rapidly it reacts. This is why the reaction involving the less stable isotope of carbon; Carbon-14 is very rapid. It is the same reason as explained above that is responsible for this. The bond between unstable species are not strong and are easily breakable, thereby leading to a quick reaction.
Hope this Helps!!!
Answer:
Maximum gravitational Force: 
Explanation:
The maximum gravitational force is achieved when the center of gravity are the closer they can be. For the spheres the center of gravity is at the center of it, so the closer this two centers of gravity can be is:
bowling ball radius + billiard ball radius = 0,128 m
The general equation for the magnitude of gravitational force is:

Solving for:




The result is:

Explanation:
Reaction:
Cu + 2AgC₂H₃O₂ → Cu(C₂H₃O₂)₂ + 2Ag
The problem is to split the reaction into oxidation and reduction halves:
The oxidation half is the sub-reaction that undergoes oxidation
The reduction half is the one that undergoes reduction:
The ionic equation:
Cu + 2Ag⁺ + 2C₂H₃O₂⁻ → Cu²⁺ + 2C₂H₃O₂⁻ + 2Ag
Oxidation half:
Cu → Cu²⁺ + 2e⁻
Reduction half:
2Ag⁺ + 2e⁻ → 2Ag
C₂H₃O₂⁻ is neither oxidized nor reduced in the reaction.
learn more:
Oxidation state brainly.com/question/10017129
#learnwithBrainly