Answer:
i think yes it could make the color go lighter
Explanation:
Explanation:
Science is the body of knowledge that explores the physical and natural world. Engineering is the application of knowledge in order to design, build and maintain a product or a process that solves a problem and fulfills a need (i.e. a technology).
Answer:
a). TRUE
Explanation:
Thermal efficiency of a system is the defined as the ratio of the net work done to the total heat input to the system. It is a dimensionless quantity.
Mathematically, thermal efficiency is
η = net work done / heat input
While heat rate is the reciprocal of efficiency. It is defined as the ratio of heat supplied to the system to the useful work done.
Mathematically, heat rate is
Heat rate = heat input / net work done
Thus from above we can see that heat rate is the reciprocal of thermal efficiency.
Thus, Heat rate is reciprocal of thermal efficiency.
Answer:
<h2>The Invention of the Internal Combustion Engine (ICE)</h2>
Explanation:
The internal combustion engine is an engine in which ignition and combustion take place in the engine(in one place), the invention of the ICE was an integral part of the industrial revolution, as there was increasing demand for power, and manual labor could not suffice, especially during the mid 19 century.
The ICE made it possible for tasks that demand intensive power consumption to come through to reality, it was as a result of the invention of the ICE that road transportation was made easier for mankind, as the means of transport then was the use of beast of burden, now we have cars, airplanes ship, etc, essentially the invention of ICE reduced the tedious task man would have to engage in for his daily needs
Answer:
The convective coefficient is 37.3 W/m²K.
Explanation:
Use Newton’s law of cooling to determine the heat transfer coefficient. Assume there is no heat transfer from the ends of electric resistor. Heat is transferred from the resistor curved surface.
Step1
Given:
Diameter of the resistor is 2 cm.
Length of the resistor is 16 cm.
Current is 5 amp.
Voltage is 6 volts.
Resistor temperature is 100°C.
Room air temperature is 20°C.
Step2
Electric power from the resistor is transferred to heat and this heat is transferred to the environment by means of convection.
Power of resistor is calculated as follows:
P=VI

P= 30 watts.
Step3
Newton’s law of cooling is expressed as follows:

Here, h is the convection heat coefficient and
is the exposed surface area of the resistor.
Substitute the values as follows:


h = 37.3 W/m²K.
Thus, the convective coefficient is 37.3 W/m²K.