Answer:
a. The speed is 2.39 m/s
b. The acceleration of the block is 10.2
Explanation:
First, we have to do the energy balance where we consider two states, the first where the spring remains still and the second when it is stretched 0.400m:
Δx=
W_{ext}=20.4 Nm

To determine, the acceleration we solve the following equation for a:

Answer:
0.6 A
Explanation:
As the motor gears towards full speed, the voltage of the circuit tends to become the difference that exists between the line voltage and the that of the back emf. Remembering Ohm's law, we then apply it to get the final, lower current that is based on the reduced voltage Ef. We use the provided resistance in the question, that is 3 ohms.
Ef = (120 V) - (117 V) = 3 V
If = Ef/R = (3 V) / (5.0 Ω) = 0.6 A
Explanation:
ability to gain speed over a short period of time.
the formula is:
_ v - v0 <Delta> v
a = _______ = ________
t <Delta> t
<span>Kirchhoff's laws apply to AC circuits to either two cases: instantaneousneous values of currents and voltages or to complex values of currents and voltages. However, this never applies to: rms values of currents and voltages. Kirchoff's law relates to the current, voltage and resistance to multiple nodes</span>