Answer:
497.00977 N
3742514.97005
Explanation:
= Density of water = 1000 kg/m³
C = Drag coefficient = 0.09
v = Velocity of dolphin = 7.5 m/s
r = Radius of bottlenose dolphin = 0.5/2 = 0.25 m
A = Area
Drag force

The drag force on the dolphin's nose is 497.00977 N
at 20°C
= Dynamic viscosity = 
Reynold's Number

The Reynolds number is 3742514.97005
If this case could ever happen, the speed would follow from this formula:

with f the frequency and lambda the wavelength. We are give a wavelength of 10m. The frequencies of the visible light can range between 400 to about 790 Terahertz, so let us pick a middle point of 600 THz ("green-ish") as a "representative."

The speed of such a wave would have to be 6e+15 m/s (which would be 7 orders of magnitude higher than the universal speed of light constant)
A=f/m
A=900/425
A=2.18
To determine acceleration you divide the force by the mass.
id have to say its thunder
Answer:
Explanation:
Given that
Mass of bowling ball M1=7.2kg
The radius of bowling ball r1=0.11m
Mass of billiard ball M2=0.38kg
The radius of the Billiard ball r2=0.028m
Gravitational constant
G=6.67×10^-11Nm²/kg²
The magnitude of their distance apart is given as
r=r1+r2
r=0.028+0.11
r=0.138m
Then, gravitational force is given as
F=GM1M2/r²
F=6.67×10^-11×7.2×0.38/0.138²
F=9.58×10^-9N
The force of attraction between the two balls is
F=9.58×10^-9N