Initially, the experiment has only potential energy (since total energy is the sum of kinetic and potential energy). And at the end, the experment has only kinetic energy.
The angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
The angular velocity (ω) of an object is the rate at which the object's angle position is changing in relation to time.
For a wheel attached to an incline angle, the angular velocity can be computed by considering the conservation of energy theorem.
As such the total kinetic energy (K.E) and rotational kinetic energy (R.K.E) at a point is equal to the total potential energy (P.E) at the other point.
i.e.
P.E = K.E + R.K.E







Therefore, we can conclude that the angular velocity of the wheel at the bottom of the incline is 4.429 rad/sec
Learn more about angular velocity here:
brainly.com/question/1452612
Answer:
a = 3 m/s^2
Explanation:
Vi = 10 m/s
Vf = 40 m/s
t = 10 s
Plug those values into the following equation:
Vf = Vi + at
40 = 10 + 10a
---> a = 3 m/s^2
Answer:
15.7m/s
Explanation:
To solve this problem, we use the right motion equation.
Here, we have been given the height through which the ball drops;
Height of drop = 14.5m - 1.9m = 12.6m
The right motion equation is;
V² = U² + 2gh
V is the final velocity
U is the initial velocity = 0
g is the acceleration due to gravity = 9.8m/s²
h is the height
Now insert the parameters and solve;
V² = 0² + 2 x 9.8 x 12.6
V² = 246.96
V = √246.96 = 15.7m/s