Answer:
Dimer of two peptide chains with 1 mole of molybdenum metal each.
Explanation:
Percentage of molybdenum in protein = 0.08%
Molecular mass of nitrate reductase = 240,000 g
Mass of molybdenum = x

Moles of molybdenum =
Each peptide chain of nitrate reductase contain 1 mole of molybdenum.
This means that nitrate reductase is composed of to two peptide chains. And in each peptide there is a single mole of molybdenum metal.
Layer 2 and layer 9 are the same relative age.
Explanation:
The statement that best describes the rock layers is that Layer 2 and layer 9 are the same relative age..
The relative age is used in placing sedimentary rocks in order of their occurrence.
To do this, we apply the sedimentary laws.
The ones applicable here are:
- Principle of superposition states that in an undisturbed sequence, the oldest layer is at the base and youngest on top.
- Principle of cross cutting states that a fault and intrusion are younger than the rocks they cut through.
- Principle of fossil and fauna succession states that fossils and fauna succeed on another in a determinable form.
We see that layers 2 and 9 have the same fossil and are the same lithological units.
learn more:
Sedimentary rocks brainly.com/question/2740663
#learnwithBrainly
Answer:
Explanation:
1. the 1/2 reaction that occurs at the cathode
3Cl2(g) +6e^- -------------> 6Cl^- (aq)
2 the 1/2 reaction that occurs at the anode
2MnO2(s) + 8OH^-(aq) ----------> 2MnO4^- (aq) + 4H2O(l) +6e^-
2MnO2(s) + 8OH^-(aq) ----------> 2MnO4^- (aq) + 4H2O(l) +6e^-
E0 = -0.59v
3Cl2(g) +6e^- -------------> 6Cl^- (aq)
E0 = 1.39v
3Cl2 (g) + 2MnO2 (s) + 8OH^(−) (aq)---------> 6Cl^(−) (aq) + 2MnO4^(−) (aq) + 4H2O (l)
E0cell = 0.80v
Asking a question............
Answer: The enthalpy of combustion, per mole, of butane is -2657.4 kJ
Explanation:
The balanced chemical reaction is,
The expression for enthalpy change is,
Putting the values we get :
2 moles of butane releases heat = 5314.8 kJ
1 mole of butane release heat = 
Thus enthalpy of combustion per mole of butane is -2657.4 kJ