First the theoretical yield of Nabr
by use of mole ratio between FeBr3 and NaBr which is 2:6 the theoretical yield
=2.36 x6/2= 7.08 moles
the % yield = actual yield/ theoretical yield x 100
that is 6.14/7.08 x100= 86.72%
The artificial fixation of nitrogen (N2) has enormous energy, environmental, and societal impact, the most important of which is the synthesis of ammonia (NH3) for fertilizers that help support nearly half of the world's population.
<h3>Artificial fixation of nitrogen</h3>
a) The equilibrium constant expression is Kp=PCH4 PH2 OP CO×PH 23.
(b) (i) As the pressure increases, the equilibrium will shift to the left so that less number of moles are produced.
(ii) For an exothermic reaction, with the increase in temperature, the equilibrium will shift in the backward direction.
(iii) When a catalyst is used, the equilibrium is not disturbed. The equilibrium is quickly attained
To learn more about equilibrium constant visit the link
brainly.com/question/10038290
#SPJ4
Answer:
<em>Varying frequency</em> between both waves accounts for difference in speed.
Explanation:
The speed of a wave is dependent on four major factors:
- wavelength
- frequency
- medium, and
- temperature
Assuming equal temperature and medium of travel of these sound waves, and given that the wavelength (that is distance of travel) is equal, the only varying factor would be their frequency.
Wave speed is calculated by multiplying the wavelength times the frequency
⇒ Speed = λ * <em>f</em>
<span>Find molar mass of Fe2O3 = 159.7 g/mol
Then: 79.85g/159.7 g/mol = 0.5 mol</span>
You must add 45 mL of the 80 % alcohol to the 30 % alcohol to get a 35 % solution.
You can use a modified dilution formula to calculate the volume of 80 % alcohol
V1×C1 + V2×C2 = V3×C3
Let the volume of 80 % mixture 1 = <em>x</em> mL. Then the volume of the final 35 % mixture 3 = (405 + <em>x</em> ) mL
(<em>x</em> mL×80 % alc) + (405 mL×30 % alc) = (405 + <em>x</em>)mL × 35 % alc
80x + 12 150 = 14 175 + 35 x
45x = 2025
x = 2025/45 = 45