D=m/v ⇒ m=d*v
d=density
m=mass
v=volume
d(ether)=0.71 gr/cm³=0.71 gr/ ml
v=130 ml
m=d*v
m=0.71 gr/ml*(130 ml)=92.3 g
Solution: m=92.3 g
Answer: pH = 14
Explanation: Please see the attachments below
Answer:
The correct answer is option E.
Explanation:
Structures for the reactants and products are given in an aimage ;
Number of double bonds in oxygen gas molecule = 1
Number of double bonds in nitro dioxide gas molecule = 1
Number of single bond in in nitro dioxide gas molecule = 1
Number of triple bonds in nitrogen gas molecule = 1

![\Delta H=[2 mol\times \Delta H_{f,NO_2}]-[1 mol\times \Delta H_{f,N_2}-2 mol\times \Delta H_{f,O_2}]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B2%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CNO_2%7D%5D-%5B1%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CN_2%7D-2%20mol%5Ctimes%20%5CDelta%20H_%7Bf%2CO_2%7D%5D)

(pure element)
(pure element )

The enthalpy of the given reaction is 15.86 kcal.
Answer:
The conversion efficiency of a chemical process.
Explanation:
Hope this helps!
Answer:

Explanation:
Volume of a cone:
We have
and we want to find
when the height is 2 cm.
We can see in our equation for the volume of a cone that we have three variables: V, r, and h.
Since we only have dV/dt and dh/dt, we can rewrite the equation in terms of h only.
We are given that the height of the cone is 1/5 the radius at any given time, 1/5r, so we can write this as r = 5h.
Plug this value for r into the volume formula:
Differentiate this equation with respect to time t.
Plug known values into the equation and solve for dh/dt.
Divide both sides by 100π to solve for dh/dt.
The height of the cone is increasing at a rate of 1/10π cm per second.