Answer:
179.87 g/mol
Explanation:
First you need to determine the number of each elements in the molecule. This information comes from the molecular formula.
Ze(NO3)2 tells us that there is 1 Ze atom and 2 NO3 anions per molecule. each NO3 anion will have 1 nitrogen and 3 oxygens. Due to that, one molecule of Ze(NO3)2 will have 1 atom of Ze, 2 atoms of nitrogen (N), and 6 atoms of oxygen (O).
Next you need to add all of the individual atom's molar masses to get the over all molar masses. The molar masses of each element is in the question but it can also be found on the periodic table.
molar mass of Ze(NO3)2 = 55.85g/mol + (14.01g/mol*2) + (16.00g/mol*6)
molar mass of Ze(NO3)2 = 179.87 g/mol
I hope this helps.
Sorry this will probably be pretty long.
So think of the "control" as being something you yourself add to increase or decrease the effects in an experiment.
I'll give you an example so it is not as confusing.
Say you have decided to make an experiment on plants. Which plant can grow the fastest on which type of liquid? What is being added to this experiment? The liquid! Or all of the liquids you used. Like if you used Coke, Lime Gatorade, Orange Gatorade, and Water. Each drink will EFFECT each plant differently.
Hope I was of any hope?
Answer:
yes
Explanation:
Usually, it would not affect the crucible, but depending on the temperature of the flame the enamel of the crucible may begin to melt and stick to the metal object being used to handle the crucible. This tiny amount that is melted off can cause very small changes in the original mass of the crucible, which although it is almost unnoticeable it is still there. Therefore, the answer to this question would be yes.
As we have the balanced reaction equation is:
N2O4 (g) ↔ 2NO2(g)
from this balanced equation, we can get the equilibrium constant expression
KC = [NO2]^2[N2O4]^1
from this expression, we can see that [NO2 ] is with 2 exponent of the stoichiometric and we can see that from the balanced equation as NO2
is 2NO2 in the balanced equation.
and [N2O4] is with 1 exponent of the stoichiometric and we can see that from the balanced equation as N2O4 is 1 N2O4 in the balanced equation.
∴ the correct exponent for N2O4 in the equilibrium constant expression is 1
From,
RAM=element×its relative abudance/total abudance
=((107×13)+(12×109))/25
The answer is=107.96