Good formula to remember!
V_F^2 = V_0^2 + 2 * a * d
V_F = final speed
V_0 = initial speed
0^2 = V_0^2 + 2*(-5)*15 = V_0^2 -150,
V_0 = sqrt(150) = 12.25 m/s
Answer:
Explanation:
At resonance ω₀L = 1 / ω₀C , L is inductance and C is capacitance .
C = 1 / ω₀²L , ω₀ = 5.1 x 10⁵ . ( given )
voltage over resistance = R I , R is resistance and I is current
voltage over inductance = Iω₀L
R I / Iω₀L = 60 / 40
R / ω₀L = 3 / 2
L = 2 R / 3 ω₀
= 2 x 121 / 3 x 5.1 x 10⁵
= 15.81 x 10⁻⁵
C = 1 / ω₀²L
= 1 / (5.1 x 10⁵)² x 15.81 x 10⁻⁵
= .002432 x 10⁻⁵
= 24.32 x 10⁻⁹ F
Let the angular frequency required be ω
Tan 45 = (ωL - 1 / ωC) / R
ωL - 1 / ωC = R
ω²LC - 1 = R ωC
ω²LC = 1 + R ωC
ω² x 15.81 x 10⁻⁵ x 24.32 x 10⁻⁹ = 1 + 121 x ω x 24.32 x 10⁻⁹
ω² x 384.5 x 10⁻¹⁴ = 1 + 2942.72 x10⁻⁹ω
ω² - 7.65 x 10⁶ ω - 1 = 0
ω = 7.65 x 10⁶
frequency = 7.65 x 10⁶ / 2π
= 1.22 x 10⁶ Hz
Explanation:
The speed of a wave is given by :
......(1)
(i) Here, the wavelength of a sound wave in air reduces by a factor of 3. Equation (1) becomes :

Wavelength and frequency are inversely proportional to each other. So, if wavelength of a sound wave in air reduces by a factor of 3, then the frequency will increases by a factor of 3.
(ii) It remains the same.
Answer:
a) 
b) 
Explanation:
given,
n =1.5 for glass surface
n = 1 for air
incidence angle = 45°
using Fresnel equation of reflectivity of S and P polarized light

using snell's law to calculate θ t


a) 

b) 
