Answer:
See attached image for diagrams and solution
Explanation:
A.
H = Aeσ^4
Using the stefan Boltzmann law
When we differentiate
dH/dT = 4AeσT³
dH/dT = 4(0.15)(0.9)(5.67)(10^-8)(650)³
= 8.4085
Exact error = 8.4085x20
= 168.17
H(650) = 0.15(0.9)(5.67)(10^-8)(650)⁴
= 1366.376watts
B.
Verifying values
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(670)⁴
= 1542.468
H(T+ΔT) = 0.15(0.9)(5.67)(10^-8)(630)⁴
= 1205.8104
Error = 1542.468-1205.8104/2
= 168.329
ΔT = 40
H(T+ΔT) = 0.15(0.9)(5.67)(10)^-8(690)⁴
= 1735.05
H(T-ΔT) = 0.15(0.9)(5.67)(10^-8)(610)⁴
= 1735.05-1059.83/2
= 675.22/2
= 337.61
Aesthetic elements are the components that are added to the design to be considered pleasing to the eye.
<h3>What are aesthetic elements?</h3>
They are those characteristics of an object that deal with the outward appearance or beauty of an object, that is, they are those elements that make it valuable, appreciable, relevant or transcendent.
To do this, the qualities must be in the design of the object but must also be perceived by the consumer, the aesthetic being what we like to perceive in objects.
Therefore, we can conclude that aesthetic elements are the components that are added to the design to be considered pleasing to the eye.
Learn more about aesthetic elements here: brainly.com/question/24568271
Answer:
number of pulses produced = 162 pulses
Explanation:
give data
radius = 50 mm
encoder produces = 256 pulses per revolution
linear displacement = 200 mm
solution
first we consider here roll shaft encoder on the flat surface without any slipping
we get here now circumference that is
circumference = 2 π r .........1
circumference = 2 × π × 50
circumference = 314.16 mm
so now we get number of pulses produced
number of pulses produced =
× No of pulses per revolution .................2
number of pulses produced =
× 256
number of pulses produced = 162 pulses