Answer:
0.426 volts
Explanation:
It is given that,
The radius of a circular loop, r = 11.2 cm = 0.112 m
An elastic conducting material is stretched into a circular loop.
It is placed with its plane perpendicular to a uniform 0.880 T magnetic field.
The radius of the loop starts to shrink at an instantaneous rate of 68.8 cm/s, dr/dt = 0.688 m/s
We need to find the emf induced in the loop at that instant.

So, the magnitude of induced emf is 0.426 volts.
When an object turns around an internal axis (like the Earth turns around its axis) it is called a rotation. When an object circles an external axis (like the Earth circles the sun) it is called a revolution.
Because upward buoyant force is slightly higher than gravitation force for this particular object
Answer:
The second vector
points due West with a magnitude of 600N
Explanation:
The original vector
points with a magnitude of 200N due east, the Resultant vector
points due west (that's how east/west direction can be interpreted, from east to west) with a magnitude of 400N. If we choose East as the positive direction and West as the negative one, we can write the following vectorial equation:

With the negative sign signifying that the vector points west.