Explanation:
decimal diamond ml dias and ka n t u t a n mo papa mo
The spiral structure of the milky way can be explained by long lived quasi-static density waves<em>, </em><em>according to the lin-shu hypothesis. </em>Curiously, the waves of higher density gas and stars (seen as spiral arms) appear to remain static as stars move around the galaxy. This explained by assuming that the gravitational disturbances cause by the 'clumping' material in the arms does not affect the gravitational field of the galaxy as whole and is therefore negligible.
source: Astrophysicist
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Answer:
a) The Energy added should be 484.438 MJ
b) The Kinetic Energy change is -484.438 MJ
c) The Potential Energy change is 968.907 MJ
Explanation:
Let 'm' be the mass of the satellite , 'M'(6×
be the mass of earth , 'R'(6400 Km) be the radius of the earth , 'h' be the altitude of the satellite and 'G' (6.67×
N/m) be the universal constant of gravitation.
We know that the orbital velocity(v) for a satellite -
v=
[(R+h) is the distance of the satellite from the center of the earth ]
Total Energy(E) = Kinetic Energy(KE) + Potential Energy(PE)
For initial conditions ,
h =
= 98 km = 98000 m
∴Initial Energy (
) =
m
+
Substituting v=
in the above equation and simplifying we get,
= 
Similarly for final condition,
h=
= 198km = 198000 m
∴Final Energy(
) = 
a) The energy that should be added should be the difference in the energy of initial and final states -
∴ ΔE =
- 
=
(
-
)
Substituting ,
M = 6 ×
kg
m = 1036 kg
G = 6.67 × 
R = 6400000 m
= 98000 m
= 198000 m
We get ,
ΔE = 484.438 MJ
b) Change in Kinetic Energy (ΔKE) =
m[
-
]
=
[
-
]
= -ΔE
= - 484.438 MJ
c) Change in Potential Energy (ΔPE) = GMm[
-
]
= 2ΔE
= 968.907 MJ
Extensional stress. is your answer.