The answer to your question is A
Answer:
Average velocity of an object is equal to the instantaneous velocity when it's acceleration is zero.
Explanation:
Answer:



Explanation:
= Torque = 36.5 Nm
= Initial angular velocity = 0
= Final angular velocity = 10.3 rad/s
t = Time = 6.1 s
I = Moment of inertia
From the kinematic equations of linear motion we have

Torque is given by

The wheel's moment of inertia is 
t = 60.6 s
= 10.3 rad/s
= 0

Frictional torque is given by

The magnitude of the torque caused by friction is 
Speeding up

Slowing down

Total number of revolutions


The total number of revolutions the wheel goes through is
.
The answer is "B" - If there are no windows then there will be no light coming in, and therefore you don't have to worry about what time of day you do the experiment at.
Answer:
T = 17649.03 N = 17.65 KN
Explanation:
The tension in the cable must be equal to the apparent weight of the passenger. For upward acceleration:

where,
T = Tension in cable = ?
= Apparent weight
m = mass = 1603 kg
g = acceleration due to gravity = 9.81 m/s²
a = acceleration of elevator = 1.2 m/s²
Therefore,

<u>T = 17649.03 N = 17.65 KN</u>