Answer:
F = 24 N
Explanation:
In this exercise we have a bar l = 100 m with a center of gravity x = 4 m, which force is needed to lift it from the other end
Let's use the rotational equilibrium relationship, where we consider the counterclockwise rotations as positive and fix the reference system at the point closest to the center of gravity
∑ τ = 0
F l -x W = 0
F = 
let's calculate
F =
4/100 600
F = 24 N
Answer:
Their velocity is 0m/s because the first box was only 10 kg and the second box was double the weight
Answer:
(a) 1.054 m/s²
(b) 1.404 m/s²
Explanation:
0.5·m·g·cos(θ) - μs·m·g·(1 - sin(θ)) - μk·m·g·(1 - sin(θ)) = m·a
Which gives;
0.5·g·cos(θ) - μ·g·(1 - sin(θ) = a
Where:
m = Mass of the of the block
μ = Coefficient of friction
g = Acceleration due to gravity = 9.81 m/s²
a = Acceleration of the block
θ = Angle of elevation of the block = 20°
Therefore;
0.5×9.81·cos(20°) - μs×9.81×(1 - sin(20°) - μk×9.81×(1 - sin(20°) = a
(a) When the static friction μs = 0.610 and the dynamic friction μk = 0.500, we have;
0.5×9.81·cos(20°) - 0.610×9.81×(1 - sin(20°) - 0.500×9.81×(1 - sin(20°) = 1.054 m/s²
(b) When the static friction μs = 0.400 and the dynamic friction μk = 0.300, we have;
0.5×9.81·cos(20°) - 0.400×9.81×(1 - sin(20°) - 0.300×9.81×(1 - sin(20°) = 1.404 m/s².
Answer: The ratio of atoms of potassium to ratio of atoms of oxygen is 4:2
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed, and remains conserved. The mass of products must be same as that of the reactants.
Thus the number of atoms of each element must be same on both sides of the equation so as to keep the mass same and thus balanced chemical equations are written.
K exists as atoms and oxygen exist as molecule which consists of 2 atoms. The ratio of number of atoms on both sides of the reaction are same and thus the ratio of atoms of potassium to ratio of atoms of oxygen is 4:2.