At the start of the 0.266 s, the object's speed was 8.26 m/s.
The question can only be talking about speed, not velocity.
answer would be C. multiply the input force.
Answer:
a) x(t) = 10t + (2/3)*t^3
b) x*(0.1875) = 10.18 m
Explanation:
Note: The position of the horse is x = 2m. There is a typing error in the question. Otherwise, The solution to cubic equation holds a negative value of time t.
Given:
- v(t) = 10 + 2*t^2 (radar gun)
- x*(t) = 10 + 5t^2 + 3t^3 (our coordinate)
Find:
-The position x of horse as a function of time t in radar system.
-The position of the horse at x = 2m in our coordinate system
Solution:
- The position of horse according to radar gun:
v(t) = dx / dt = 10 + 2*t^2
- Separate variables:
dx = (10 + 2*t^2).dt
- Integrate over interval x = 0 @ t= 0
x(t) = 10t + (2/3)*t^3
- time @ x = 2 :
2 = 10t + (2/3)*t^3
0 = 10t + (2/3)*t^3 + 2
- solve for t:
t = 0.1875 s
- Evaluate x* at t = 0.1875 s
x*(0.1875) = 10 + 5(0.1875)^2 + 3(0.1875)^3
x*(0.1875) = 10.18 m
C i would think
it sounds best
Answer:
q₃=5.3nC
Explanation:
First, we have to calculate the force exerted by the charges q₁ and q₂. To do this, we use the Coulomb's Law:

Since we know the net force, we can use this to calculate q₃. As q₁ is at the right side of q₃ and q₁ and q₃ have opposite signs, the force F₁₃ points to the right. In a similar way, as q₂ is at the left side of q₃, and q₂ and q₃ have equal signs, the force F₂₃ points to the right. That means that the resultant net force is the sum of these two forces:

In words, the value of q₃ must be 5.3nC.