Answer:
(240 × 3 × 31.998)/(122.5 × 2) g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 122.5 31.998
2KClO₃ ⟶ 2KCl + 3O₂
Mass/g: 240
Mass of O₂ = 240 g KClO₃ × (1 mol KClO₃/122.5 g KClO₃) × (3 mol O₂/2 mol KClO₃) × (31.998 g O₂/1 mol O₂) = 94.0 g O₂
Mass of O₂= (240 × 3 × 31.998)/(2 × 122.5) = 94.0 g O₂
This increases the rate of rxn because the particles, because according to the Collision Theory, <span>the </span>rate of rxn <span>is proportional to number of effective collisions between the </span>reactant <span>molecules.</span>
Answer: The pressure of the He is 2.97 atm
Explanation:
According to Dalton's law, the total pressure is the sum of individual pressures.
Given :
=total pressure of gases = 6.50 atm
= partial pressure of Nitrogen = 1.23 atm
= partial pressure of oxygen = 2.3 atm
= partial pressure of Helium = ?
putting in the values we get:
The pressure of the He is 2.97 atm
Answer:
(V) 1s 2 2s 2 2p 6 3s 2 3p 5
Explanation:
Electron Affinity can be defined as the energy associated with a neutral atom, when an electron is added to form a negative ion.
1s 2 2s 2 2p 6 3s 2 3p 5 , is the electronic configuration of Chlorine.
The electron affinity is positive because it is an exorthermic reaction, meaning that, energy was released during the addition of an electron to the atom.
Cl (g) + e- -------> Cl- (g) = -349KJ/mol
The reaction is of order three with respect to the reactant.
<h3>Explanation</h3>
The rate of a reaction of order n about a certain reactant is proportion to the concentration of that reactant raised to the n-th power. This is true only if concentrations of any other reactants stay constant in the whole process.
In other words, Rate = constant × [Reactant]ⁿ, Rate ∝ [Reactant]ⁿ. (The symbol "∝" reads "proportional to".)
In this question,
[4 × Reactant]ⁿ ÷ [Reactant]ⁿ = 64.
In other words, 4ⁿ = 64, where n is the order of the reaction with respect to this reactant.
It might take some guesswork to find the value of n. Alternatively, n can be solved directly with a calculator using logarithms. Taking natural log of both sides:
.
Evaluating
on Google or on a calculator with support for ln (the natural log) will give the value of n- no guesswork required.
n = 3. Therefore, the reaction is of order three with respect to this reactant.